欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

elasticsearch 学习之基础CURD

程序员文章站 2022-04-14 13:22:41
环境:elasticsearch6.1.2 kibana6.1.2 基础概念: 1、_index元数据 (1)代表一个document存放在哪个index中(2)类似的数据放在一个索引,非类似的数据放不同索引:product index(包含了所有的商品),sales index(包含了所有的商品销 ......

环境:elasticsearch6.1.2        kibana6.1.2 

 

基础概念:

1、_index元数据

(1)代表一个document存放在哪个index中
(2)类似的数据放在一个索引,非类似的数据放不同索引:product index(包含了所有的商品),sales index(包含了所有的商品销售数据),inventory index(包含了所有库存相关的数据)。如果你把比如product,sales,human resource(employee),全都放在一个大的index里面,比如说company index,不合适的。
(3)index中包含了很多类似的document:类似是什么意思,其实指的就是说,这些document的fields很大一部分是相同的,你说你放了3个document,每个document的fields都完全不一样,这就不是类似了,就不太适合放到一个index里面去了。
(4)索引名称必须是小写的,不能用下划线开头,不能包含逗号。

2、_type元数据

(1)代表document属于index中的哪个类别(type)
(2)一个索引通常会划分为多个type,逻辑上对index中有些许不同的几类数据进行分类:因为一批相同的数据,可能有很多相同的fields,但是还是可能会有一些轻微的不同,可能会有少数fields是不一样的,举个例子,就比如说,商品,可能划分为电子商品,生鲜商品,日化商品,等等。
(3)type名称可以是大写或者小写,但是同时不能用下划线开头,不能包含逗号

3、_id元数据

(1)代表document的唯一标识,与index和type一起,可以唯一标识和定位一个document
(2)我们可以手动指定document的id(put /index/type/id),也可以不指定,由es自动为我们创建一个id

 

一、插入

  数据准备(插入):es会自动建立index和type,不需要提前创建,而且es默认会对document每个field都建立倒排索引,让其可以被搜索。

PUT /ecommerce/product/1
{
    "name" : "gaolujie yagao",
    "desc" :  "gaoxiao meibai",
    "price" :  30,
    "producer" :      "gaolujie producer",
    "tags": [ "meibai", "fangzhu" ]
}
PUT /ecommerce/product/2
{
    "name" : "jiajieshi yagao",
    "desc" :  "youxiao fangzhu",
    "price" :  25,
    "producer" :      "jiajieshi producer",
    "tags": [ "fangzhu" ]
}

PUT /ecommerce/product/3
{
    "name" : "zhonghua yagao",
    "desc" :  "caoben zhiwu",
    "price" :  40,
    "producer" :      "zhonghua producer",
    "tags": [ "qingxin" ]
}

插入数据时的id生成策略

  手动指定document id当es的数据来源于其他系统,比如mysql而这些数据都有主键ID,建议使用该方式,可以直接将mysql的主键作为es中的ID。

  自动生成的id当我们的数据是直接存储到es中时,建议采用该方式。该方式的特点,长度为20个字符,URL安全,base64编码,GUID,分布式系统并行生成时不可能会发生冲突

POST /test_index/test_type
{
  "test_content": "my test"
}
结果: { "_index": "test_index", "_type": "test_type", "_id": "fkSoJ2EBuYE9HLKhxglD", "_version": 1, "result": "created", "_shards": { "total": 2, "successful": 1, "failed": 0 }, "_seq_no": 0, "_primary_term": 1 }

 

二、修改

1、document的全量替换型修改:该方式是直接替换类型是 product  id=1的文档。该方式必须带上所有的field,才能去进行信息的修改。

PUT /ecommerce/product/1
{
    "name" : "jiaqiangban gaolujie yagao",
    "desc" :  "gaoxiao meibai",
    "price" :  30,
    "producer" :      "gaolujie producer",
    "tags": [ "meibai", "fangzhu" ]
}

注意:

1、document的全量替换

(1)语法与创建文档是一样的,如果document id不存在,那么就是创建;如果document id已经存在,那么就是全量替换操作,替换document的json串内容
(2)document是不可变的,如果要修改document的内容,第一种方式就是全量替换,直接对document重新建立索引,替换里面所有的内容
(3)es会将老的document标记为deleted,然后新增我们给定的一个document,当我们创建越来越多的document的时候,es会在适当的时机在后台启动线程删除标记为deleted的document,释放空间。

2、partial update  指定修改内容修改(推荐该方式)

POST /ecommerce/product/1/_update
{
  "doc": {
    "name": "jiaqiangban gaolujie yagao"
  }
}

  该方式发生的步骤与全量替换基本一样,不过该方式将这些流程放在es内部,这样减少了放了请求,减少并发冲突发的概率。他同样会生成两份document,老的document标记为deleted,partial update 修改的数据更新到新的document中

retry_on_conflict(重策略)当执行索引和更新的时候,有可能另一个进程正在执行更新。这个时候就会造成冲突,这个参数就是用于定义当遇到冲突时,再过多长时间执行操作,通过retry_on_conflict参数设置重试次数来自动完成,这样update操作将会在发生错误前重试——这个值默认为0。

例如:

 

POST /test_index/test_type/1/_update?retry_on_conflict=5
{
  "doc": {
    "test_name": "update book re",
    "test_id":11122
  }
}

 

 

 

三、删除 

  根据类型的Id直接删除

DELETE /ecommerce/product/1

  注意 不是物理删除,只会将其标记为deleted,当数据越来越多的时候,在后台启动线程自动删除,释放空间

四、查询

(一)、query string search

    什么是query string search:search参数都是以http请求的query string来附带的

语法:

/_search
在所有的索引中搜索所有的类型
/gb/_search
在 gb 索引中搜索所有的类型
/gb,us/_search
在 gb 和 us 索引中搜索所有的文档
/g*,u*/_search
在任何以 g 或者 u 开头的索引中搜索所有的类型
/gb/user/_search
在 gb 索引中搜索 user 类型
/gb,us/user,tweet/_search
在 gb 和 us 索引中搜索 user 和 tweet 类型
/_all/user,tweet/_search
在所有的索引中搜索 user 和 tweet 类型

当在单一的索引下进行搜索的时候,Elasticsearch 转发请求到索引的每个分片中,可以是主分片也可以是副本分片,然后从每个分片中收集结果。多索引搜索恰好也是用相同的方式工作的--只是会涉及到更多的分片。

demo:

1、搜索全部商品:

GET /ecommerce/product/_search
{
  
}

结果分析:

took:耗费了几毫秒
timed_out:是否超时,这里是没有
_shards:数据拆成了5个分片,所以对于搜索请求,会打到所有的primary shard(或者是它的某个replica shard也可以)
hits.total:查询结果的数量,3个document
hits.max_score:score的含义,就是document对于一个search的相关度的匹配分数,越相关,就越匹配,分数也高
hits.hits:包含了匹配搜索的document的详细数据

 

2、搜索商品名称中包含yagao的商品,并按照价格倒序:

GET /ecommerce/product/_search?q=name:yagao&sort=price:desc
{
  
}

(二)、query DSL

DSL:Domain Specified Language,特定领域的语言
http request body:请求体,可以用json的格式来构建查询语法,比较方便,可以构建各种复杂的语法。

1、分页查询所有商品并按照价格倒序

GET /ecommerce/product/_search
{
  "query": { "match_all": {} },
  "sort": [
        { "price": "desc" }
    ],
  "from": 0,
  "size": 3
}

query:包装查询条件

sort:包装排序条件

form:第几页

size:每页几条

2、根据名称查询,并按照价格倒序

GET /ecommerce/product/_search
{
  "query": { "match": {
              "name":"yagao"
          } 
  },
  "sort": [
        { "price": "desc" }
    ]
}

3、指定返回结果的列(field)

GET /ecommerce/product/_search
{
  "query": { "match_all": {} },
  "_source": ["name", "price"]
}

_source元数据:就是说,我们在创建一个document的时候,使用的那个放在request body中的json串,默认情况下,在get的时候,会原封不动的给我们返回回来。我们可以指定_source中,返回哪些field。

在分布式系统中深度分页
    理解为什么深度分页是有问题的,我们可以假设在一个有 5 个主分片的索引中搜索。 当我们请求结果的第一页(结果从 1 到 10 ),每一个分片产生前 10 的结果,并且返回给 协调节点 ,协调节点对 50 个结果排序得到全部结果的前 10 个。
    现在假设我们请求第 1000 页--结果从 10001 到 10010 。所有都以相同的方式工作除了每个分片不得不产生前10010个结果以外。 然后协调节点对全部 50050 个结果排序最后丢弃掉这些结果中的 50040 个结果。
    可以看到,在分布式系统中,对结果排序的成本随分页的深度成指数上升。这就是 web 搜索引擎对任何查询都不要返回超过 1000 个结果的原因。

(三)、query filter

1、搜索商品名称包含yagao,而且售价大于25元的商品

GET /ecommerce/product/_search
{
    "query" : {
        "bool" : {
            "must" : {
                "match" : {
                    "name" : "yagao" 
                }
            },
            "filter" : {
                "range" : {
                    "price" : { "gt" : 25 } 
                }
            }
        }
    }
}

 

(四)full-text search (全文检索)

全文检索会将输入的搜索串拆解开来,去倒排索引里面去一一匹配,只要能匹配上任意一个拆解后的单词,就可以作为结果返回。

1、根据一段文字进行查找

GET /ecommerce/product/_search
{
    "query" : {
        "match" : {
            "producer" : "yagao producer"
        }
    }
}

producer这个字段,会先被拆解,建立倒排索引。根据es中这个字段的所有数据分词后有 jiajieshi、gaolujie、zhonghua、producer

查询条件producer 也会被分词  ,分词为 yagao 和 producer

结果分析: "max_score": 0.2876821 匹配度

(五)、phrase search (短语查找)

输入的搜索串,必须在指定的字段文本中,完全包含一模一样的,才可以算匹配,作为结果返回。

GET /ecommerce/product/_search
{
    "query" : {
        "match_phrase" : {
            "producer" : "yagao producer"
        }
    }
}

结果为空

 

(六)、highlight search (高亮搜索结果)

GET /ecommerce/product/_search
{
    "query" : {
        "match" : {
            "producer" : "producer"
        }
    },
    "highlight": {
        "fields" : {
            "producer" : {}
        }
    }
}