欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python爬虫入门(六) Scrapy框架之原理介绍

程序员文章站 2022-04-14 12:54:48
Scrapy框架 Scrapy简介 Scrapy是用纯Python实现一个为了爬取网站数据、提取结构性数据而编写的应用框架,用途非常广泛。 框架的力量,用户只需要定制开发几个模块就可以轻松的实现一个爬虫,用来抓取网页内容以及各种图片,非常之方便。 Scrapy 使用了 Twisted['twɪstɪ ......

Scrapy框架

Scrapy简介

  • Scrapy是用纯Python实现一个为了爬取网站数据、提取结构性数据而编写的应用框架,用途非常广泛。

  • 框架的力量,用户只需要定制开发几个模块就可以轻松的实现一个爬虫,用来抓取网页内容以及各种图片,非常之方便。

  • Scrapy 使用了 Twisted['twɪstɪd](其主要对手是Tornado)异步网络框架来处理网络通讯,可以加快我们的下载速度,不用自己去实现异步框架,并且包含了各种中间件接口,可以灵活的完成各种需求。

Scrapy架构

python爬虫入门(六) Scrapy框架之原理介绍

  • Scrapy Engine(引擎): 负责SpiderItemPipelineDownloaderScheduler中间的通讯,信号、数据传递等。

  • Scheduler(调度器): 它负责接受引擎发送过来的Request请求,并按照一定的方式进行整理排列,入队,当引擎需要时,交还给引擎

  • Downloader(下载器):负责下载Scrapy Engine(引擎)发送的所有Requests请求,并将其获取到的Responses交还给Scrapy Engine(引擎),由引擎交给Spider来处理,

  • Spider(爬虫):它负责处理所有Responses,从中分析提取数据,获取Item字段需要的数据,并将需要跟进的URL提交给引擎,再次进入Scheduler(调度器)

  • Item Pipeline(管道):它负责处理Spider中获取到的Item,并进行进行后期处理(详细分析、过滤、存储等)的地方.

  • Downloader Middlewares(下载中间件):你可以当作是一个可以自定义扩展下载功能的组件。

  • Spider Middlewares(Spider中间件):你可以理解为是一个可以自定扩展和操作引擎Spider中间通信的功能组件(比如进入Spider的Responses;和从Spider出去的Requests)

 白话讲解Scrapy运作流程

代码写好,程序开始运行...

  1. 引擎:Hi!Spider, 你要处理哪一个网站?

  2. Spider:老大要我处理xxxx.com。

  3. 引擎:你把第一个需要处理的URL给我吧。

  4. Spider:给你,第一个URL是xxxxxxx.com。

  5. 引擎:Hi!调度器,我这有request请求你帮我排序入队一下。

  6. 调度器:好的,正在处理你等一下。

  7. 引擎:Hi!调度器,把你处理好的request请求给我。

  8. 调度器:给你,这是我处理好的request

  9. 引擎:Hi!下载器,你按照老大的下载中间件的设置帮我下载一下这个request请求

  10. 下载器:好的!给你,这是下载好的东西。(如果失败:sorry,这个request下载失败了。然后引擎告诉调度器,这个request下载失败了,你记录一下,我们待会儿再下载)

  11. 引擎:Hi!Spider,这是下载好的东西,并且已经按照老大的下载中间件处理过了,你自己处理一下(注意!这儿responses默认是交给def parse()这个函数处理的)

  12. Spider:(处理完毕数据之后对于需要跟进的URL),Hi!引擎,我这里有两个结果,这个是我需要跟进的URL,还有这个是我获取到的Item数据。

  13. 引擎:Hi !管道 我这儿有个item你帮我处理一下!调度器!这是需要跟进URL你帮我处理下。然后从第四步开始循环,直到获取完老大需要全部信息。

  14. 管道``调度器:好的,现在就做!

 制作Scrapy爬虫步骤

1.新建项目

scrapy startproject mySpider

python爬虫入门(六) Scrapy框架之原理介绍

scrapy.cfg :项目的配置文件

mySpider/ :项目的Python模块,将会从这里引用代码

mySpider/items.py :项目的目标文件

mySpider/pipelines.py :项目的管道文件

mySpider/settings.py :项目的设置文件

mySpider/spiders/ :存储爬虫代码目录

2.明确目标(mySpider/items.py)

想要爬取哪些信息,在Item里面定义结构化数据字段,保存爬取到的数据

3.制作爬虫(spiders/xxxxSpider.py)

import scrapy

class ItcastSpider(scrapy.Spider):
    name = "itcast"
    allowed_domains = ["itcast.cn"]
    start_urls = (
        'http://www.itcast.cn/',
    )

    def parse(self, response):
        pass
  • name = "" :这个爬虫的识别名称,必须是唯一的,在不同的爬虫必须定义不同的名字。

  • allow_domains = [] 是搜索的域名范围,也就是爬虫的约束区域,规定爬虫只爬取这个域名下的网页,不存在的URL会被忽略。

  • start_urls = () :爬取的URL元祖/列表。爬虫从这里开始抓取数据,所以,第一次下载的数据将会从这些urls开始。其他子URL将会从这些起始URL中继承性生成。

  • parse(self, response) :解析的方法,每个初始URL完成下载后将被调用,调用的时候传入从每一个URL传回的Response对象来作为唯一参数,主要作用如下:

 4.保存数据(pipelines.py)

在管道文件里面设置保存数据的方法,可以保存到本地或数据库

温馨提醒

第一次运行scrapy项目的时候

出现-->"DLL load failed" 错误提示,需要安装pypiwin32模块    

先写个简单入门的实例

 (1)items.py

想要爬取的信息

# -*- coding: utf-8 -*-

import scrapy

class ItcastItem(scrapy.Item):
    name = scrapy.Field()
    title = scrapy.Field()
    info = scrapy.Field()

(2)itcastspider.py

写爬虫程序

#!/usr/bin/env python
# -*- coding:utf-8 -*-

import scrapy
from mySpider.items import ItcastItem

# 创建一个爬虫类
class ItcastSpider(scrapy.Spider):
    # 爬虫名
    name = "itcast"
    # 允许爬虫作用的范围
    allowd_domains = ["http://www.itcast.cn/"]
    # 爬虫起始的url
    start_urls = [
        "http://www.itcast.cn/channel/teacher.shtml#",
    ]

    def parse(self, response):
        teacher_list = response.xpath('//div[@class="li_txt"]')
        # 所有老师信息的列表集合
        teacherItem = []
        # 遍历根节点集合

        for each in teacher_list:
            # Item对象用来保存数据的
            item = ItcastItem()
            # name, extract() 将匹配出来的结果转换为Unicode字符串
            # 不加extract() 结果为xpath匹配对象
            name = each.xpath('./h3/text()').extract()
            # title
            title = each.xpath('./h4/text()').extract()
            # info
            info = each.xpath('./p/text()').extract()

            item['name'] = name[0].encode("gbk")
            item['title'] = title[0].encode("gbk")
            item['info'] = info[0].encode("gbk")

            teacherItem.append(item)

        return teacherItem

输入命令:scrapy crawl itcast -o itcast.csv  保存为 ".csv"的格式

管道文件pipelines.py的用法

 (1)setting.py修改

ITEM_PIPELINES = {
  #设置好在管道文件里写的类
   'mySpider.pipelines.ItcastPipeline': 300,
}

(2)itcastspider.py

#!/usr/bin/env python
# -*- coding:utf-8 -*-

import scrapy
from mySpider.items import ItcastItem

# 创建一个爬虫类
class ItcastSpider(scrapy.Spider):
    # 爬虫名
    name = "itcast"
    # 允许爬虫作用的范围
    allowd_domains = ["http://www.itcast.cn/"]
    # 爬虫其实的url
    start_urls = [
        "http://www.itcast.cn/channel/teacher.shtml#aandroid",

    ]

    def parse(self, response):
        #with open("teacher.html", "w") as f:
        #    f.write(response.body)
        # 通过scrapy自带的xpath匹配出所有老师的根节点列表集合
        teacher_list = response.xpath('//div[@class="li_txt"]')

        # 遍历根节点集合
        for each in teacher_list:
            # Item对象用来保存数据的
            item = ItcastItem()
            # name, extract() 将匹配出来的结果转换为Unicode字符串
            # 不加extract() 结果为xpath匹配对象
            name = each.xpath('./h3/text()').extract()
            # title
            title = each.xpath('./h4/text()').extract()
            # info
            info = each.xpath('./p/text()').extract()

            item['name'] = name[0]
            item['title'] = title[0]
            item['info'] = info[0]

            yield item

(3)pipelines.py

数据保存到本地

# -*- coding: utf-8 -*-
import json

class ItcastPipeline(object):
    # __init__方法是可选的,做为类的初始化方法
    def __init__(self):
        # 创建了一个文件
        self.filename = open("teacher.json", "w")

    # process_item方法是必须写的,用来处理item数据
    def process_item(self, item, spider):
        jsontext = json.dumps(dict(item), ensure_ascii = False) + "\n"
        self.filename.write(jsontext.encode("utf-8"))
        return item

    # close_spider方法是可选的,结束时调用这个方法
    def close_spider(self, spider):
        self.filename.close()

(4)items.py

# -*- coding: utf-8 -*-

import scrapy

class ItcastItem(scrapy.Item):
    name = scrapy.Field()
    title = scrapy.Field()
    info = scrapy.Field()