欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

深度学习:3_手写一个单层的神经网络

程序员文章站 2022-03-04 20:30:04
...
# *******************************
# Target:手写一个单隐层的神经网络
# Author: Magic
# Steps:1、定义网络结构(指定输出层、隐藏层、输出层的大小)
#        2、初始化模型参数
#        3、循环操作:执行前向传播/计算损失/执行后向传播/权值更新
# *******************************

import numpy as np
import tensorflow as tf

#定义网络结构
def layer_sizes(X,Y):
    n_x = X.shape[0]
    n_h = 4
    n_y = Y.shape[0]
    return (n_x,n_h,n_y)

#初始化模型参数
def initialize_parameters(n_x,n_h,n_y):
    W1 = np.random.randn(n_h,n_x)*0.01
    b1 = np.zeros((n_h,1))
    W2 = np.random.randn(n_y,n_h)*0.01
    b2 = np.zeros((n_y,1))

    assert(W1.shape == (n_h,n_x))
    assert(b1.shape == (n_h,1))
    assert(W2.shape == (n_y,n_h))
    assert(b2.shape == (n_y,1))

    parameters = {"W1":W1,
                  "b1":b1,
                  "W2":W2,
                  "b2":b2}
    return parameters


#前向传播
def forward_propagation(X,parameters):
    W1 = parameters['W1']
    b1 = parameters['b1']
    W2 = parameters['W2']
    b2 = parameters['b2']

    Z1 = np.dot(W1,X) + b1
    A1 = np.tanh(Z1)
    Z2 = np.dot(W2,Z1) + b2
    A2 = tf.sigmoid(Z2)
    
    assert(A2.shape == (1,X.shape[1]))

    cache = {"Z1":Z1,
             "A1":A1,
             "Z2":Z2,
             "A2":A2}
    return A2,cache


#定义计算损失函数
def compute_coat(A2,Y,parameters):
    m = Y.shape[1]
    logprobs = np.multiply(np.log(A2),y) + np.multiply(np.log(1-A2),1 - Y)
    cost = -1/m * np.sum(logprobs)
    cost = np.squeeze(cost)

    assert(isinstance(cost,float))
    return cost

#定义反向传播函数
def backward_propagation(parameters,cache,X,Y):
    m = X.shape[1]

    W1 = parameters['W1']
    W2 = parameters['W2']
    A1 = cache['A1']
    A2 = cache['A2']

    dZ2 = A2 - Y
    dW2 = 1/m * np.dot(dZ2,A1.T)
    db2 = 1/m * np.sum(dZ2,axis = 1,keepdims = True)
    dZ1 = np.dot(W2.T,dZ2) * (1 - np.power(A1,2))
    dW1 = 1/m * np.dot(dZ1,X.T)
    db1 = 1/m * np.sum(dZ1,axis=1,keepdims = True)

    grads = {"dw1":dW1,
             "db1":db1,
             "dW2":dW2,
             "db2":db2}
    return grads

#定义权值更新函数
def update_parameters(parameters,grads,learning_rate = 1.2):
    W1 = parameters['W1']
    b1 = parameters['b1']
    W2 = parameters['W2']
    b2 = parameters['b2']

    dW1 = grads['dW1']
    db1 = grads['db1']
    dW2 = grads['dW2']
    db2 = grads['db2']

    W1 -= dW1 * learning_rate
    b1 -= db1 * learning_rate
    W2 -= dW2 * learning_rate
    b2 -= db2 *learning_rate

    parameters = {"W1":W1,
                  "b1":b1,
                  "W2":W2,
                  "b2":b2}

    return parameters


#封装
def nn_model(X,Y,n_h,num_iterations = 10000,print_cost = False):
    np.random.seed(3)
    n_x = layer_sizes(X,Y)[0]
    n_y = layer_sizes(X,Y)[2]

    parameters = initialize_parameters(n_x,n_h,n_y)
    W1 = parameters['W1']
    b1 = parameters['b1']
    W2 = parameters['W2']
    b2 = parameters['b2']

    for i in range(0,num_iterations):
        A2,cache = forward_propagation(X,parameters)
        cost = compute_coat(A2,Y,parameters)
        grads = backward_propagation(parameters,cache,X,Y)
        parameters = update_parameters(parameters,grads,learning_rate= 1.2)

        if print_cost and i % 1000 == 0:
            print("Cost after iteration %i:%f"%(i,cost))

    return parameters