深度学习:3_手写一个单层的神经网络
程序员文章站
2022-03-04 20:30:04
...
# *******************************
# Target:手写一个单隐层的神经网络
# Author: Magic
# Steps:1、定义网络结构(指定输出层、隐藏层、输出层的大小)
# 2、初始化模型参数
# 3、循环操作:执行前向传播/计算损失/执行后向传播/权值更新
# *******************************
import numpy as np
import tensorflow as tf
#定义网络结构
def layer_sizes(X,Y):
n_x = X.shape[0]
n_h = 4
n_y = Y.shape[0]
return (n_x,n_h,n_y)
#初始化模型参数
def initialize_parameters(n_x,n_h,n_y):
W1 = np.random.randn(n_h,n_x)*0.01
b1 = np.zeros((n_h,1))
W2 = np.random.randn(n_y,n_h)*0.01
b2 = np.zeros((n_y,1))
assert(W1.shape == (n_h,n_x))
assert(b1.shape == (n_h,1))
assert(W2.shape == (n_y,n_h))
assert(b2.shape == (n_y,1))
parameters = {"W1":W1,
"b1":b1,
"W2":W2,
"b2":b2}
return parameters
#前向传播
def forward_propagation(X,parameters):
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
Z1 = np.dot(W1,X) + b1
A1 = np.tanh(Z1)
Z2 = np.dot(W2,Z1) + b2
A2 = tf.sigmoid(Z2)
assert(A2.shape == (1,X.shape[1]))
cache = {"Z1":Z1,
"A1":A1,
"Z2":Z2,
"A2":A2}
return A2,cache
#定义计算损失函数
def compute_coat(A2,Y,parameters):
m = Y.shape[1]
logprobs = np.multiply(np.log(A2),y) + np.multiply(np.log(1-A2),1 - Y)
cost = -1/m * np.sum(logprobs)
cost = np.squeeze(cost)
assert(isinstance(cost,float))
return cost
#定义反向传播函数
def backward_propagation(parameters,cache,X,Y):
m = X.shape[1]
W1 = parameters['W1']
W2 = parameters['W2']
A1 = cache['A1']
A2 = cache['A2']
dZ2 = A2 - Y
dW2 = 1/m * np.dot(dZ2,A1.T)
db2 = 1/m * np.sum(dZ2,axis = 1,keepdims = True)
dZ1 = np.dot(W2.T,dZ2) * (1 - np.power(A1,2))
dW1 = 1/m * np.dot(dZ1,X.T)
db1 = 1/m * np.sum(dZ1,axis=1,keepdims = True)
grads = {"dw1":dW1,
"db1":db1,
"dW2":dW2,
"db2":db2}
return grads
#定义权值更新函数
def update_parameters(parameters,grads,learning_rate = 1.2):
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
dW1 = grads['dW1']
db1 = grads['db1']
dW2 = grads['dW2']
db2 = grads['db2']
W1 -= dW1 * learning_rate
b1 -= db1 * learning_rate
W2 -= dW2 * learning_rate
b2 -= db2 *learning_rate
parameters = {"W1":W1,
"b1":b1,
"W2":W2,
"b2":b2}
return parameters
#封装
def nn_model(X,Y,n_h,num_iterations = 10000,print_cost = False):
np.random.seed(3)
n_x = layer_sizes(X,Y)[0]
n_y = layer_sizes(X,Y)[2]
parameters = initialize_parameters(n_x,n_h,n_y)
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
for i in range(0,num_iterations):
A2,cache = forward_propagation(X,parameters)
cost = compute_coat(A2,Y,parameters)
grads = backward_propagation(parameters,cache,X,Y)
parameters = update_parameters(parameters,grads,learning_rate= 1.2)
if print_cost and i % 1000 == 0:
print("Cost after iteration %i:%f"%(i,cost))
return parameters
上一篇: RestTemplate 设置头信息,发送post请求,并携带参数(发短信)
下一篇: vbs更新
推荐阅读