欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Redis正确使用的十个技巧

程序员文章站 2022-03-04 19:56:46
redis 在当前的技术社区里是非常热门的。从来自 antirez 一个小小的个人项目到成为内存数据存储行业的标准,redis已经走过了很长的一段路。 1、停止使用 ke...

redis 在当前的技术社区里是非常热门的。从来自 antirez 一个小小的个人项目到成为内存数据存储行业的标准,redis已经走过了很长的一段路。
1、停止使用 keys *

okay,以挑战这个命令开始这篇文章,或许并不是一个好的方式,但其确实可能是最重要的一点。很多时候当我们关注一个redis实例的统计数据, 我们会快速地输入”keys *”命令,这样key的信息会很明显地展示出来。平心而论,从程序化的角度出发往往倾向于写出下面这样的伪代码:

for key in 'keys *': 
 doallthethings() 

但是当你有1300万个key时,执行速度将会变慢。因为keys命令的时间复杂度是o(n),其中n是要返回的keys的个数,这样这个命令的复杂度就取决于数据库的大小了。并且在这个操作执行期间,其它任何命令在你的实例中都无法执行。

作为一个替代命令,看一下 scan 吧,其允许你以一种更友好的方式来执行… scan 通过增量迭代的方式来扫描数据库。这一操作基于游标的迭代器来完成的,因此只要你觉得合适,你可以随时停止或继续。

2、找出拖慢 redis 的罪魁祸首

由于 redis 没有非常详细的日志,要想知道在 redis 实例内部都做了些什么是非常困难的。幸运的是 redis 提供了一个下面这样的命令统计工具:

127.0.0.1:6379> info commandstats 
# commandstats 
cmdstat_get:calls=78,usec=608,usec_per_call=7.79 
cmdstat_setex:calls=5,usec=71,usec_per_call=14.20 
cmdstat_keys:calls=2,usec=42,usec_per_call=21.00 
cmdstat_info:calls=10,usec=1931,usec_per_call=193.10 

通过这个工具可以查看所有命令统计的快照,比如命令执行了多少次,执行命令所耗费的毫秒数(每个命令的总时间和平均时间)

只需要简单地执行 config resetstat 命令就可以重置,这样你就可以得到一个全新的统计结果。

3、将 redis-benchmark 结果作为参考,而不要一概而论

redis 之父 salvatore 就说过:“通过执行get/set命令来测试redis就像在雨天检测法拉利的雨刷清洁镜子的效果”。很多时候人们跑到我这里,他们想知道为什么自己的 redis-benchmark统计的结果低于最优结果 。但我们必须要把各种不同的真实情况考虑进来,例如:

  • 可能受到哪些客户端运行环境的限制?
  • 是同一个版本号吗?
  • 测试环境中的表现与应用将要运行的环境是否一致?

redis-benchmark的测试结果提供了一个保证你的 redis-server 不会运行在非正常状态下的基准点,但是你永远不要把它作为一个真实的“压力测试”。压力测试需要反应出应用的运行方式,并且需要一个尽可能的和生产相似的环境。

4、hashes 是你的最佳选择

以一种优雅的方式引入 hashes 吧。hashes 将会带给你一种前所未有的体验。之前我曾看到过许多类似于下面这样的key结构:

foo:first_name 
foo:last_name 
foo:address 

上面的例子中,foo 可能是一个用户的用户名,其中的每一项都是一个单独的 key。这就增加了 犯错的空间,和一些不必要的 key。使用 hash 代替吧,你会惊奇地发现竟然只需要一个 key :

127.0.0.1:6379> hset foo first_name "joe" 
(integer) 1 
127.0.0.1:6379> hset foo last_name "engel" 
(integer) 1 
127.0.0.1:6379> hset foo address "1 fanatical pl" 
(integer) 1 
127.0.0.1:6379> hgetall foo 
1) "first_name" 
2) "joe" 
3) "last_name" 
4) "engel" 
5) "address" 
6) "1 fanatical pl" 
127.0.0.1:6379> hget foo first_name 
"joe" 

5、设置 key 值的存活时间

无论什么时候,只要有可能就利用key超时的优势。一个很好的例子就是储存一些诸如临时认证key之类的东西。当你去查找一个授权key时——以 oauth为例——通常会得到一个超时时间。这样在设置key的时候,设成同样的超时时间,redis就会自动为你清除!而不再需要使用keys *来遍历所有的key了,怎么样很方便吧?

6、选择合适的回收策略

既然谈到了清除key这个话题,那我们就来聊聊回收策略。当 redis 的实例空间被填满了之后,将会尝试回收一部分key。根据你的使用方式,我强烈建议使用 volatile-lru 策略——前提是你对key已经设置了超时。但如果你运行的是一些类似于 cache 的东西,并且没有对 key 设置超时机制,可以考虑使用 allkeys-lru 回收机制。我的建议是先在这里查看一下可行的方案。

7、如果你的数据很重要,请使用 try/except

如果必须确保关键性的数据可以被放入到 redis 的实例中,我强烈建议将其放入 try/except 块中。几乎所有的redis客户端采用的都是“发送即忘”策略,因此经常需要考虑一个 key 是否真正被放到 redis 数据库中了。至于将 try/expect 放到 redis 命令中的复杂性并不是本文要讲的,你只需要知道这样做可以确保重要的数据放到该放的地方就可以了。

8、不要耗尽一个实例

无论什么时候,只要有可能就分散多redis实例的工作量。从3.0.0版本开始,redis就支持集群了。redis集群允许你基于key范围分离出部分包含主/从模式的key。完整的集群背后的“魔法”可以在这里找到。但如果你是在找教程,那这里是一个再适合不过的地方了。如果不能选择集群,考虑一下命名空间吧,然后将你的key分散到多个实例之中。关于怎样分配数据,在redis.io网站上有这篇精彩的评论。

9、内核越多越好吗?

当然是错的。redis 是一个单线程进程,即使启用了持久化最多也只会消耗两个内核。除非你计划在一台主机上运行多个实例——希望只会是在开发测试的环境下!——否则的话对于一个 redis 实例是不需要2个以上内核的。

10、高可用

到目前为止 redis sentinel 已经经过了很全面的测试,很多用户已经将其应用到了生产环境中(包括 objectrocket )。如果你的应用重度依赖于 redis ,那就需要想出一个高可用方案来保证其不会掉线。当然,如果不想自己管理这些东西,objectrocket 提供了一个高可用平台,并提供7×24小时的技术支持,有意向的话可以考虑一下。

以上就是关于redis正确使用的十个技巧,希望对大家的学习有所帮助,果断收藏吧