欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python之np.argmax()及对axis=0或者1的理解

程序员文章站 2022-04-13 10:05:40
对于np.argmax()让我迷惑了很久,尤其是其中的axis=1的比较结果。一、np.argmax()的理解1、最简单的例子假定现在有一个数组a = [3, 1, 2, 4, 6, 1]现在要算数组...

对于np.argmax()让我迷惑了很久,尤其是其中的axis=1的比较结果。

一、np.argmax()的理解

1、最简单的例子

假定现在有一个数组a = [3, 1, 2, 4, 6, 1]现在要算数组a中最大数的索引是多少。最直接的思路,先假定第0个数最大,然后拿这个和后面的数比,找到大的就更新索引。代码如下

a = [3, 1, 2, 4, 6, 1]
maxindex = 0
i = 0
for tmp in a:
    if tmp > a[maxindex]:
        maxindex = i
    i += 1
print(maxindex)

这个问题可以帮助我们理解argmax.

2、函数的解释

一维数组

import numpy as np
a = np.array([3, 1, 2, 4, 6, 1])
print(np.argmax(a))

argmax返回的是最大数的索引.argmax有一个参数axis,默认是0,表示第几维的最大值。

二维数组

import numpy as np
a = np.array([[1, 5, 5, 2],
              [9, 6, 2, 8],
              [3, 7, 9, 1]])
print(np.argmax(a, axis=0))

为了描述方便,a就表示这个二维数组。np.argmax(a, axis=0)的含义是a[0][j],a[1][j],a[2]j中最大值的索引。从a[0][j]开始,最大值索引最初为(0,0,0,0),拿a[0][j]和a[1][j]作比较,9大于1,6大于5,8大于2,所以最大值索引由(0,0,0,0)更新为(1,1,0,1),再和a[2][j]作比较,7大于6,9大于5所以更新为(1,2,2,1)。

再分析下面的输出.

import numpy as np
a = np.array([[1, 5, 5, 2],
              [9, 6, 2, 8],
              [3, 7, 9, 1]])
print(np.argmax(a, axis=1))

np.argmax(a, axis=1)的含义是a[i][0],a[i][1],a[i][2],a[i]3中最大值的索引。从a[i][0]开始,a[i][0]对应的索引为(0,0,0),先假定它就是最大值索引(思路和上节简单例子完全一致)拿a[i][0]和a[i][1]作比较,5大于1,7大于3所以最大值索引由(0,0,0)更新为(1,0,1),再和a[i][2]作比较,9大于7,更新为(1,0,2),再和a[i][3]作比较,不用更新,最终值为(1,0,2)

三维数组

import numpy as np
a = np.array([
              [
                  [1, 5, 5, 2],
                  [9, -6, 2, 8],
                  [-3, 7, -9, 1]
              ],

              [
                  [-1, 5, -5, 2],
                  [9, 6, 2, 8],
                  [3, 7, 9, 1]
              ]
            ])
print(np.argmax(a, axis=0))

np.argmax(a, axis=0)的含义是a[0][j][k],a[1][j][k] (j=0,1,2,k=0,1,2,3)中最大值的索引。

从a[0][j][k]开始,a[0][j][k]对应的索引为((0,0,0,0),(0,0,0,0),(0,0,0,0)),拿a[0][j][k]和a[1][j][k]对应项作比较6大于-6,3大于-3,9大于-9,所以更新这几个位置的索引,将((0,0,0,0),(0,0,0,0),(0,0,0,0))更新为((0,0,0,0),(0,1,0,0),(1,0,1,0)).。

再看axis=1的情况

import numpy as np
a = np.array([
              [
                  [1, 5, 5, 2],
                  [9, -6, 2, 8],
                  [-3, 7, -9, 1]
              ],

              [
                  [-1, 5, -5, 2],
                  [9, 6, 2, 8],
                  [3, 7, 9, 1]
              ]
            ])
print(np.argmax(a, axis=1))

np.argmax(a, axis=1)的含义是a[i][0][k],a[i][1][k] (i=0,1,k=0,1,2,3)中最大值的索引。从a[i][0][k]开始,a[i][0][k]对应的索引为((0,0,0,0),(0,0,0,0)),拿a[i][0][k]和a[i][1][k]对应项作比较,9大于1,8大于2,9大于-1,6大于5,2大于-5,8大于2,所以更新这几个位置的索引,将((0,0,0,0),(0,0,0,0))更新为((1,0,0,1),(1,1,1,1)),现在最大值对应的数组为((9,5,5,8),(9,6,2,8))。

再拿((9,5,5,8),(9,6,2,8))和a[i][2][k]对应项从比较,7大于5,7大于6,9大于2.更新这几个位置的索引。

将((1,0,0,1),(1,1,1,1))更新为((1,2,0,1),(1,2,2,1)).axis=2的情况也是类似的。

二、关于axis的理解

设置axis的主要原因是方便我们进行多个维度的计算。

通过例子来进行理解

比如:

a = np.array([[1, 2, 3], 
     [2, 3, 4], 
     [5, 4, 3], 
     [8, 7, 2]])
np.argmax(a, 0)   #输出:array([3, 3, 1]
np.argmax(a, 1)   #输出:array([2, 2, 0, 0]

axis = 0:

你就这么想,0是最大的范围,所有的数组都要进行比较,只是比较的是这些数组相同位置上的数(我的理解是0 列比较输出):

a[0] = array([1, 2, 3])
a[1] = array([2, 3, 4])
a[2] = array([5, 4, 3])
a[3] = array([8, 7, 2])
# output : [3, 3, 1]

axis = 1: (行比较输出)

等于1的时候,比较范围缩小了,只会比较每个数组内的数的大小,结果也会根据有几个数组,产生几个结果。

a[0] = array([1, 2, 3]) #2
a[1] = array([2, 3, 4]) #2
a[2] = array([5, 4, 3]) #0
a[3] = array([8, 7, 2]) #0

特例

这是里面都是数组长度一致的情况,如果不一致,axis最大值为最小的数组长度-1,超过则报错。

当不一致的时候,axis=0的比较也就变成了每个数组的和的比较。

比较示例如下

当数组长度都一样时

import numpy as np
a = np.array([
              [
                  [1, 5, 5, 2],
                  [9, -6, 2, 8],
                  [-3, 7, -9, 1]
              ],

              [
                  [-1, 5, -5, 2],
                  [9, 6, 2, 8],
                  [3, 7, 9,1]
              ]
            ])
print(np.argmax(a, axis=0))
print(np.argmax(a, axis=1))

输出为

[[0 0 0 0]
[0 1 0 0]
[1 0 1 0]]
[[1 2 0 1]

[1 2 2 1]]

当数组长度都不一样时,

  a = np.array([
                  [
                      [1, 5, 5, 2],
                      [9, -6, 2, 8],
                      [-3, 7, -9, 1]
                  ],
    
                  [
                      [-1, 5, -5, 2],
                      [9, 6, 2, 8],
                      [3, 7, 9]
                  ]
                ])
    print(np.argmax(a, axis=0))
 print(np.argmax(a, axis=1))

输出为

[0 1 1]
[1 1]

numpy 的argmax的参数axis=0/1的概念

对numpy的argmax一直记不得默认是行还是列搜索,总是用糊涂,每次都要查资料,今天突然醒悟。

先列后行,为什么呢?

看下面的一个列表,就知道了。

>>b=np.array([1, 2, 3, 4, 3, 2, 1])
>>np.argmax(b)
>>3
>>np.argmax(b, axis=0)
>>3

默认axis=0,列表只有一个维度,自然就是一行数据的最大数的索引。

那么对于二维向量,只需要记住axis是坐标轴的方向,不是行列的概念。

在numpy库中:

轴用来为超过一维的数组定义的属性,二维数据拥有两个轴:

第0轴沿着行的垂直往下,第1轴沿着列的方向水平延伸。简单的来记就是axis=0代表往跨行(down),而axis=1代表跨列(across)。

所以axis=0代表的就是列查找,axis=1代表着行查找。

python之np.argmax()及对axis=0或者1的理解

>>a = np.array([[1, 5, 5, 2],
               [9, 6, 2, 8],
               [3, 7, 9, 1]])
>>np.argmax(a,axis=0)
>>array([1, 2, 2, 1], dtype=int64)
>>np.argmax(a,axis=1)
>>array([1, 0, 2], dtype=int64)

结论:

argmax返回的是最大数的索引。argmax有一个参数axis,默认是0,表示每一列的最大值的索引,axis=1表示每一行的最大值的索引。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。