欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  科技

hadoop实践|各省份的学生平均成绩

程序员文章站 2022-04-12 21:22:36
问题描述 建立两张表,第1张表有学生姓名和出生省份数据,第2张表有学生姓名和英语成绩数据,用map-reduce程序来统计同一省份的学生英语平均成绩。 数据自备 一个解析 实在想不到如...

问题描述

建立两张表,第1张表有学生姓名和出生省份数据,第2张表有学生姓名和英语成绩数据,用map-reduce程序来统计同一省份的学生英语平均成绩。

数据自备

一个解析

实在想不到如何一次MapReduce完成,菜鸡的我只能分两次完成。如果有更好的思路希望私信或留言

分两次,先多表关联, 然后算平均值

里面有条数据 shanghai打成shagnhai了

hadoop实践|各省份的学生平均成绩

程序

JoinTable.java

package examples;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

public class JoinTable {  
    public static class SMMapper extends Mapper {  
        private String flag = null;  

        @Override  
        protected void setup(Context context) throws IOException,  
                InterruptedException {  
            FileSplit split = (FileSplit) context.getInputSplit();  
            flag = split.getPath().getName();  
        }  

        @Override  
        protected void map(LongWritable key, Text value, Context context)  
                throws IOException, InterruptedException {  
            String[] val = value.toString().split(",");  
            if ("placeTable".equals(flag)) {   
                context.write(new Text(val[0]), new Text("a,"  
                        + val[1]));  
            } else if ("scoreTable".equals(flag)) {  
                context.write(new Text(val[0]), new Text("b,"  
                        + val[1]));  
            }  
        }  
    }  

    public static class SMReducer extends  
            Reducer {  
        @Override  
        protected void reduce(Text key, Iterable values, Context context)  
                throws IOException, InterruptedException {  

            String[] ArrStr = new String[2];

            for (Text value : values) {  
                String[] val = value.toString().split(",");  
                if ("a".equals(val[0])) {  
                    ArrStr[0] =  val[1];
                } else if ("b".equals(val[0])) {  
                    ArrStr[1] =  val[1]; 
                }  
            }  
            context.write(new Text(ArrStr[0]), new Text(ArrStr[1]));  
        }  
    }  

    public static void main(String[] args) throws IOException,  
            ClassNotFoundException, InterruptedException {  
        String input1 = "hdfs:/score/placeTable";  
        String input2 = "hdfs:/score/scoreTable";  
        String output = "hdfs:/score/out";  

        Configuration conf = new Configuration();  
        conf.addResource("classpath:/core-site.xml");  
        conf.addResource("classpath:/hdfs-site.xml");  

        Job job = Job.getInstance(conf, "JoinTable");  
        job.setJarByClass(JoinTable.class);  
        job.setOutputKeyClass(Text.class);  
        job.setOutputValueClass(Text.class);  

        job.setMapperClass(SMMapper.class);  
        job.setReducerClass(SMReducer.class);  

        job.setInputFormatClass(TextInputFormat.class);  
        job.setOutputFormatClass(TextOutputFormat.class);  

        FileInputFormat.setInputPaths(job, new Path(input1), new Path(input2));// 加载2个输入数据集  
        Path outputPath = new Path(output);  
        outputPath.getFileSystem(conf).delete(outputPath, true);  
        FileOutputFormat.setOutputPath(job, outputPath);  

        System.exit(job.waitForCompletion(true) ? 0 : 1);  
    }  
}  

AverageScore.java

package examples;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

public class AverageScore {  
    public static class SMMapper extends Mapper {  
        @Override  
        protected void setup(Context context) throws IOException,  
                InterruptedException {  
            FileSplit split = (FileSplit) context.getInputSplit();  
            split.getPath().getName();  
        }  

        @Override  
        protected void map(LongWritable key, Text value, Context context)  
                throws IOException, InterruptedException { 
            String str = value.toString();
            char[] ArrCh = str.toCharArray();
            int i = 0;
            for(; i {  
        private DoubleWritable result = new DoubleWritable();
        @Override  
        protected void reduce(Text key, Iterable values, Context context)  
                throws IOException, InterruptedException {  
            double sum = 0;
            int len_ = 0;
            for(Text val:values){
                sum += Double.parseDouble(val.toString());
                ++len_;
            }
            result.set(sum/len_);

            context.write(key, result);  
        }  
    }  

    public static void main(String[] args) throws IOException,  
            ClassNotFoundException, InterruptedException {  
        String input1 = "hdfs:/score/out/part-r-00000";   
        String output = "hdfs:/score/out/lastout";  

        Configuration conf = new Configuration();  
        conf.addResource("classpath:/core-site.xml");  
        conf.addResource("classpath:/hdfs-site.xml");  

        Job job = Job.getInstance(conf, "AverageScore");  
        job.setJarByClass(AverageScore.class);  
        job.setOutputKeyClass(Text.class);  
        job.setOutputValueClass(Text.class);  

        job.setMapperClass(SMMapper.class);  
        job.setReducerClass(SMReducer.class);  

        job.setInputFormatClass(TextInputFormat.class);  
        job.setOutputFormatClass(TextOutputFormat.class);  

        FileInputFormat.setInputPaths(job, new Path(input1));
        Path outputPath = new Path(output);  
        outputPath.getFileSystem(conf).delete(outputPath, true);  
        FileOutputFormat.setOutputPath(job, outputPath);  

        System.exit(job.waitForCompletion(true) ? 0 : 1);  
    }  
}  

日志

JoinTable.java

18/03/25 08:34:31 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
18/03/25 08:34:32 INFO Configuration.deprecation: session.id is deprecated. Instead, use dfs.metrics.session-id
18/03/25 08:34:32 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=
18/03/25 08:34:33 WARN mapreduce.JobResourceUploader: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
18/03/25 08:34:33 WARN mapreduce.JobResourceUploader: No job jar file set.  User classes may not be found. See Job or Job#setJar(String).
18/03/25 08:34:33 INFO input.FileInputFormat: Total input paths to process : 2
18/03/25 08:34:33 INFO mapreduce.JobSubmitter: number of splits:2
18/03/25 08:34:33 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_local371132637_0001
18/03/25 08:34:33 INFO mapreduce.Job: The url to track the job: https://localhost:8080/
18/03/25 08:34:33 INFO mapreduce.Job: Running job: job_local371132637_0001
18/03/25 08:34:33 INFO mapred.LocalJobRunner: OutputCommitter set in config null
18/03/25 08:34:33 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 1
18/03/25 08:34:33 INFO mapred.LocalJobRunner: OutputCommitter is org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter
18/03/25 08:34:34 INFO mapred.LocalJobRunner: Waiting for map tasks
18/03/25 08:34:34 INFO mapred.LocalJobRunner: Starting task: attempt_local371132637_0001_m_000000_0
18/03/25 08:34:34 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 1
18/03/25 08:34:34 INFO mapred.Task:  Using ResourceCalculatorProcessTree : [ ]
18/03/25 08:34:34 INFO mapred.MapTask: Processing split: hdfs://master:9000/score/placeTable:0+104
18/03/25 08:34:34 INFO mapred.MapTask: (EQUATOR) 0 kvi 26214396(104857584)
18/03/25 08:34:34 INFO mapred.MapTask: mapreduce.task.io.sort.mb: 100
18/03/25 08:34:34 INFO mapred.MapTask: soft limit at 83886080
18/03/25 08:34:34 INFO mapred.MapTask: bufstart = 0; bufvoid = 104857600
18/03/25 08:34:34 INFO mapred.MapTask: kvstart = 26214396; length = 6553600
18/03/25 08:34:34 INFO mapred.MapTask: Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
18/03/25 08:34:34 INFO mapred.LocalJobRunner: 
18/03/25 08:34:34 INFO mapred.MapTask: Starting flush of map output
18/03/25 08:34:34 INFO mapred.MapTask: Spilling map output
18/03/25 08:34:34 INFO mapred.MapTask: bufstart = 0; bufend = 118; bufvoid = 104857600
18/03/25 08:34:34 INFO mapred.MapTask: kvstart = 26214396(104857584); kvend = 26214372(104857488); length = 25/6553600
18/03/25 08:34:34 INFO mapred.MapTask: Finished spill 0
18/03/25 08:34:34 INFO mapred.Task: Task:attempt_local371132637_0001_m_000000_0 is done. And is in the process of committing
18/03/25 08:34:34 INFO mapreduce.Job: Job job_local371132637_0001 running in uber mode : false
18/03/25 08:34:34 INFO mapred.LocalJobRunner: map
18/03/25 08:34:34 INFO mapred.Task: Task 'attempt_local371132637_0001_m_000000_0' done.
18/03/25 08:34:34 INFO mapred.LocalJobRunner: Finishing task: attempt_local371132637_0001_m_000000_0
18/03/25 08:34:34 INFO mapred.LocalJobRunner: Starting task: attempt_local371132637_0001_m_000001_0
18/03/25 08:34:34 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 1
18/03/25 08:34:34 INFO mapred.Task:  Using ResourceCalculatorProcessTree : [ ]
18/03/25 08:34:34 INFO mapreduce.Job:  map 0% reduce 0%
18/03/25 08:34:34 INFO mapred.MapTask: Processing split: hdfs://master:9000/score/scoreTable:0+65
18/03/25 08:34:35 INFO mapred.MapTask: (EQUATOR) 0 kvi 26214396(104857584)
18/03/25 08:34:35 INFO mapred.MapTask: mapreduce.task.io.sort.mb: 100
18/03/25 08:34:35 INFO mapred.MapTask: soft limit at 83886080
18/03/25 08:34:35 INFO mapred.MapTask: bufstart = 0; bufvoid = 104857600
18/03/25 08:34:35 INFO mapred.MapTask: kvstart = 26214396; length = 6553600
18/03/25 08:34:35 INFO mapred.MapTask: Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
18/03/25 08:34:35 INFO mapred.LocalJobRunner: 
18/03/25 08:34:35 INFO mapred.MapTask: Starting flush of map output
18/03/25 08:34:35 INFO mapred.MapTask: Spilling map output
18/03/25 08:34:35 INFO mapred.MapTask: bufstart = 0; bufend = 79; bufvoid = 104857600
18/03/25 08:34:35 INFO mapred.MapTask: kvstart = 26214396(104857584); kvend = 26214372(104857488); length = 25/6553600
18/03/25 08:34:35 INFO mapred.MapTask: Finished spill 0
18/03/25 08:34:35 INFO mapred.Task: Task:attempt_local371132637_0001_m_000001_0 is done. And is in the process of committing
18/03/25 08:34:35 INFO mapred.LocalJobRunner: map
18/03/25 08:34:35 INFO mapred.Task: Task 'attempt_local371132637_0001_m_000001_0' done.
18/03/25 08:34:35 INFO mapred.LocalJobRunner: Finishing task: attempt_local371132637_0001_m_000001_0
18/03/25 08:34:35 INFO mapred.LocalJobRunner: map task executor complete.
18/03/25 08:34:35 INFO mapred.LocalJobRunner: Waiting for reduce tasks
18/03/25 08:34:35 INFO mapred.LocalJobRunner: Starting task: attempt_local371132637_0001_r_000000_0
18/03/25 08:34:35 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 1
18/03/25 08:34:35 INFO mapred.Task:  Using ResourceCalculatorProcessTree : [ ]
18/03/25 08:34:35 INFO mapred.ReduceTask: Using ShuffleConsumerPlugin: org.apache.hadoop.mapreduce.task.reduce.Shuffle@2f36f1ce
18/03/25 08:34:35 INFO reduce.MergeManagerImpl: MergerManager: memoryLimit=322594400, maxSingleShuffleLimit=80648600, mergeThreshold=212912320, ioSortFactor=10, memToMemMergeOutputsThreshold=10
18/03/25 08:34:35 INFO reduce.EventFetcher: attempt_local371132637_0001_r_000000_0 Thread started: EventFetcher for fetching Map Completion Events
18/03/25 08:34:35 INFO reduce.LocalFetcher: localfetcher#1 about to shuffle output of map attempt_local371132637_0001_m_000000_0 decomp: 134 len: 138 to MEMORY
18/03/25 08:34:35 INFO reduce.InMemoryMapOutput: Read 134 bytes from map-output for attempt_local371132637_0001_m_000000_0
18/03/25 08:34:35 INFO reduce.MergeManagerImpl: closeInMemoryFile -> map-output of size: 134, inMemoryMapOutputs.size() -> 1, commitMemory -> 0, usedMemory ->134
18/03/25 08:34:35 INFO reduce.LocalFetcher: localfetcher#1 about to shuffle output of map attempt_local371132637_0001_m_000001_0 decomp: 95 len: 99 to MEMORY
18/03/25 08:34:35 INFO reduce.InMemoryMapOutput: Read 95 bytes from map-output for attempt_local371132637_0001_m_000001_0
18/03/25 08:34:35 INFO reduce.MergeManagerImpl: closeInMemoryFile -> map-output of size: 95, inMemoryMapOutputs.size() -> 2, commitMemory -> 134, usedMemory ->229
18/03/25 08:34:35 INFO reduce.EventFetcher: EventFetcher is interrupted.. Returning
18/03/25 08:34:35 INFO mapred.LocalJobRunner: 2 / 2 copied.
18/03/25 08:34:35 INFO reduce.MergeManagerImpl: finalMerge called with 2 in-memory map-outputs and 0 on-disk map-outputs
18/03/25 08:34:35 INFO mapred.Merger: Merging 2 sorted segments
18/03/25 08:34:35 INFO mapred.Merger: Down to the last merge-pass, with 2 segments left of total size: 215 bytes
18/03/25 08:34:35 INFO reduce.MergeManagerImpl: Merged 2 segments, 229 bytes to disk to satisfy reduce memory limit
18/03/25 08:34:35 INFO reduce.MergeManagerImpl: Merging 1 files, 231 bytes from disk
18/03/25 08:34:35 INFO reduce.MergeManagerImpl: Merging 0 segments, 0 bytes from memory into reduce
18/03/25 08:34:35 INFO mapred.Merger: Merging 1 sorted segments
18/03/25 08:34:35 INFO mapred.Merger: Down to the last merge-pass, with 1 segments left of total size: 220 bytes
18/03/25 08:34:35 INFO mapred.LocalJobRunner: 2 / 2 copied.
18/03/25 08:34:35 INFO Configuration.deprecation: mapred.skip.on is deprecated. Instead, use mapreduce.job.skiprecords
18/03/25 08:34:35 INFO mapreduce.Job:  map 100% reduce 0%
18/03/25 08:34:36 INFO mapred.Task: Task:attempt_local371132637_0001_r_000000_0 is done. And is in the process of committing
18/03/25 08:34:36 INFO mapred.LocalJobRunner: 2 / 2 copied.
18/03/25 08:34:36 INFO mapred.Task: Task attempt_local371132637_0001_r_000000_0 is allowed to commit now
18/03/25 08:34:36 INFO output.FileOutputCommitter: Saved output of task 'attempt_local371132637_0001_r_000000_0' to hdfs://master:9000/score/out/_temporary/0/task_local371132637_0001_r_000000
18/03/25 08:34:36 INFO mapred.LocalJobRunner: reduce > reduce
18/03/25 08:34:36 INFO mapred.Task: Task 'attempt_local371132637_0001_r_000000_0' done.
18/03/25 08:34:36 INFO mapred.LocalJobRunner: Finishing task: attempt_local371132637_0001_r_000000_0
18/03/25 08:34:36 INFO mapred.LocalJobRunner: reduce task executor complete.
18/03/25 08:34:36 INFO mapreduce.Job:  map 100% reduce 100%
18/03/25 08:34:36 INFO mapreduce.Job: Job job_local371132637_0001 completed successfully
18/03/25 08:34:37 INFO mapreduce.Job: Counters: 35
    File System Counters
        FILE: Number of bytes read=1795
        FILE: Number of bytes written=869992
        FILE: Number of read operations=0
        FILE: Number of large read operations=0
        FILE: Number of write operations=0
        HDFS: Number of bytes read=442
        HDFS: Number of bytes written=79
        HDFS: Number of read operations=28
        HDFS: Number of large read operations=0
        HDFS: Number of write operations=8
    Map-Reduce Framework
        Map input records=14
        Map output records=14
        Map output bytes=197
        Map output materialized bytes=237
        Input split bytes=200
        Combine input records=0
        Combine output records=0
        Reduce input groups=7
        Reduce shuffle bytes=237
        Reduce input records=14
        Reduce output records=7
        Spilled Records=28
        Shuffled Maps =2
        Failed Shuffles=0
        Merged Map outputs=2
        GC time elapsed (ms)=13
        Total committed heap usage (bytes)=950009856
    Shuffle Errors
        BAD_ID=0
        CONNECTION=0
        IO_ERROR=0
        WRONG_LENGTH=0
        WRONG_MAP=0
        WRONG_REDUCE=0
    File Input Format Counters 
        Bytes Read=169
    File Output Format Counters 
        Bytes Written=79

AverageScore.java

18/03/25 08:36:41 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
18/03/25 08:36:43 INFO Configuration.deprecation: session.id is deprecated. Instead, use dfs.metrics.session-id
18/03/25 08:36:43 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=
18/03/25 08:36:43 WARN mapreduce.JobResourceUploader: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
18/03/25 08:36:43 WARN mapreduce.JobResourceUploader: No job jar file set.  User classes may not be found. See Job or Job#setJar(String).
18/03/25 08:36:43 INFO input.FileInputFormat: Total input paths to process : 1
18/03/25 08:36:43 INFO mapreduce.JobSubmitter: number of splits:1
18/03/25 08:36:43 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_local1381911508_0001
18/03/25 08:36:44 INFO mapreduce.Job: The url to track the job: https://localhost:8080/
18/03/25 08:36:44 INFO mapreduce.Job: Running job: job_local1381911508_0001
18/03/25 08:36:44 INFO mapred.LocalJobRunner: OutputCommitter set in config null
18/03/25 08:36:44 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 1
18/03/25 08:36:44 INFO mapred.LocalJobRunner: OutputCommitter is org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter
18/03/25 08:36:44 INFO mapred.LocalJobRunner: Waiting for map tasks
18/03/25 08:36:44 INFO mapred.LocalJobRunner: Starting task: attempt_local1381911508_0001_m_000000_0
18/03/25 08:36:44 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 1
18/03/25 08:36:44 INFO mapred.Task:  Using ResourceCalculatorProcessTree : [ ]
18/03/25 08:36:44 INFO mapred.MapTask: Processing split: hdfs://master:9000/score/out/part-r-00000:0+79
18/03/25 08:36:44 INFO mapred.MapTask: (EQUATOR) 0 kvi 26214396(104857584)
18/03/25 08:36:44 INFO mapred.MapTask: mapreduce.task.io.sort.mb: 100
18/03/25 08:36:44 INFO mapred.MapTask: soft limit at 83886080
18/03/25 08:36:44 INFO mapred.MapTask: bufstart = 0; bufvoid = 104857600
18/03/25 08:36:44 INFO mapred.MapTask: kvstart = 26214396; length = 6553600
18/03/25 08:36:44 INFO mapred.MapTask: Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
18/03/25 08:36:44 INFO mapred.LocalJobRunner: 
18/03/25 08:36:44 INFO mapred.MapTask: Starting flush of map output
18/03/25 08:36:44 INFO mapred.MapTask: Spilling map output
18/03/25 08:36:44 INFO mapred.MapTask: bufstart = 0; bufend = 79; bufvoid = 104857600
18/03/25 08:36:44 INFO mapred.MapTask: kvstart = 26214396(104857584); kvend = 26214372(104857488); length = 25/6553600
18/03/25 08:36:45 INFO mapred.MapTask: Finished spill 0
18/03/25 08:36:45 INFO mapred.Task: Task:attempt_local1381911508_0001_m_000000_0 is done. And is in the process of committing
18/03/25 08:36:45 INFO mapred.LocalJobRunner: map
18/03/25 08:36:45 INFO mapred.Task: Task 'attempt_local1381911508_0001_m_000000_0' done.
18/03/25 08:36:45 INFO mapred.LocalJobRunner: Finishing task: attempt_local1381911508_0001_m_000000_0
18/03/25 08:36:45 INFO mapred.LocalJobRunner: map task executor complete.
18/03/25 08:36:45 INFO mapred.LocalJobRunner: Waiting for reduce tasks
18/03/25 08:36:45 INFO mapred.LocalJobRunner: Starting task: attempt_local1381911508_0001_r_000000_0
18/03/25 08:36:45 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 1
18/03/25 08:36:45 INFO mapred.Task:  Using ResourceCalculatorProcessTree : [ ]
18/03/25 08:36:45 INFO mapred.ReduceTask: Using ShuffleConsumerPlugin: org.apache.hadoop.mapreduce.task.reduce.Shuffle@83f8595
18/03/25 08:36:45 INFO mapreduce.Job: Job job_local1381911508_0001 running in uber mode : false
18/03/25 08:36:45 INFO mapreduce.Job:  map 100% reduce 0%
18/03/25 08:36:45 INFO reduce.MergeManagerImpl: MergerManager: memoryLimit=322594400, maxSingleShuffleLimit=80648600, mergeThreshold=212912320, ioSortFactor=10, memToMemMergeOutputsThreshold=10
18/03/25 08:36:45 INFO reduce.EventFetcher: attempt_local1381911508_0001_r_000000_0 Thread started: EventFetcher for fetching Map Completion Events
18/03/25 08:36:45 INFO reduce.LocalFetcher: localfetcher#1 about to shuffle output of map attempt_local1381911508_0001_m_000000_0 decomp: 95 len: 99 to MEMORY
18/03/25 08:36:45 INFO reduce.InMemoryMapOutput: Read 95 bytes from map-output for attempt_local1381911508_0001_m_000000_0
18/03/25 08:36:45 INFO reduce.MergeManagerImpl: closeInMemoryFile -> map-output of size: 95, inMemoryMapOutputs.size() -> 1, commitMemory -> 0, usedMemory ->95
18/03/25 08:36:45 INFO reduce.EventFetcher: EventFetcher is interrupted.. Returning
18/03/25 08:36:45 INFO mapred.LocalJobRunner: 1 / 1 copied.
18/03/25 08:36:45 INFO reduce.MergeManagerImpl: finalMerge called with 1 in-memory map-outputs and 0 on-disk map-outputs
18/03/25 08:36:45 INFO mapred.Merger: Merging 1 sorted segments
18/03/25 08:36:45 INFO mapred.Merger: Down to the last merge-pass, with 1 segments left of total size: 85 bytes
18/03/25 08:36:45 INFO reduce.MergeManagerImpl: Merged 1 segments, 95 bytes to disk to satisfy reduce memory limit
18/03/25 08:36:45 INFO reduce.MergeManagerImpl: Merging 1 files, 99 bytes from disk
18/03/25 08:36:45 INFO reduce.MergeManagerImpl: Merging 0 segments, 0 bytes from memory into reduce
18/03/25 08:36:45 INFO mapred.Merger: Merging 1 sorted segments
18/03/25 08:36:45 INFO mapred.Merger: Down to the last merge-pass, with 1 segments left of total size: 85 bytes
18/03/25 08:36:45 INFO mapred.LocalJobRunner: 1 / 1 copied.
18/03/25 08:36:45 INFO Configuration.deprecation: mapred.skip.on is deprecated. Instead, use mapreduce.job.skiprecords
18/03/25 08:36:45 INFO mapred.Task: Task:attempt_local1381911508_0001_r_000000_0 is done. And is in the process of committing
18/03/25 08:36:45 INFO mapred.LocalJobRunner: 1 / 1 copied.
18/03/25 08:36:45 INFO mapred.Task: Task attempt_local1381911508_0001_r_000000_0 is allowed to commit now
18/03/25 08:36:45 INFO output.FileOutputCommitter: Saved output of task 'attempt_local1381911508_0001_r_000000_0' to hdfs://master:9000/score/out/lastout/_temporary/0/task_local1381911508_0001_r_000000
18/03/25 08:36:45 INFO mapred.LocalJobRunner: reduce > reduce
18/03/25 08:36:45 INFO mapred.Task: Task 'attempt_local1381911508_0001_r_000000_0' done.
18/03/25 08:36:45 INFO mapred.LocalJobRunner: Finishing task: attempt_local1381911508_0001_r_000000_0
18/03/25 08:36:45 INFO mapred.LocalJobRunner: reduce task executor complete.
18/03/25 08:36:46 INFO mapreduce.Job:  map 100% reduce 100%
18/03/25 08:36:46 INFO mapreduce.Job: Job job_local1381911508_0001 completed successfully
18/03/25 08:36:46 INFO mapreduce.Job: Counters: 35
    File System Counters
        FILE: Number of bytes read=558
        FILE: Number of bytes written=582457
        FILE: Number of read operations=0
        FILE: Number of large read operations=0
        FILE: Number of write operations=0
        HDFS: Number of bytes read=158
        HDFS: Number of bytes written=54
        HDFS: Number of read operations=13
        HDFS: Number of large read operations=0
        HDFS: Number of write operations=6
    Map-Reduce Framework
        Map input records=7
        Map output records=7
        Map output bytes=79
        Map output materialized bytes=99
        Input split bytes=106
        Combine input records=0
        Combine output records=0
        Reduce input groups=4
        Reduce shuffle bytes=99
        Reduce input records=7
        Reduce output records=4
        Spilled Records=14
        Shuffled Maps =1
        Failed Shuffles=0
        Merged Map outputs=1
        GC time elapsed (ms)=19
        Total committed heap usage (bytes)=463470592
    Shuffle Errors
        BAD_ID=0
        CONNECTION=0
        IO_ERROR=0
        WRONG_LENGTH=0
        WRONG_MAP=0
        WRONG_REDUCE=0
    File Input Format Counters 
        Bytes Read=79
    File Output Format Counters 
        Bytes Written=54