欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

c/c++ 线性表之单向链表

程序员文章站 2022-03-04 18:19:33
c/c++ 线性表之单向链表 线性表之单向链表 不是存放在连续的内存空间,链表中的每个节点都指向下一个节点,最后一个节点的下一个节点是NULL。 真实的第一个节点是头节点,头节点不存放数据,单纯为了编写程序方便。但是下面注释里写的【第一个节点】的含义是头节点的下一节点,也就是真实存放数据的第一个节点 ......

c/c++ 线性表之单向链表

线性表之单向链表

不是存放在连续的内存空间,链表中的每个节点都指向下一个节点,最后一个节点的下一个节点是NULL。

真实的第一个节点是头节点,头节点不存放数据,单纯为了编写程序方便。但是下面注释里写的【第一个节点】的含义是头节点的下一节点,也就是真实存放数据的第一个节点。

下面的代码实现了以下功能

函数 功能描述
push_back 从链表的最后插入节点
push_front 从链表的起始插入节点
show_list 打印出链表里每个节点的值
pop_back 删除链表最后一个节点
pop_front 删除链表起始节点
insert_val 在合适的位置插入一个节点;
比如原来的链表:1->3->NULL,当要插入的节点的值为2的时候,就会在1和3之间插入这个节点,插入后的链表:1->2->3->NULL
find 查找指定的节点
length 返回链表中节点的个数
delete_val 删除指定的节点
sort by val 排序,改变节点里的值,不改变节点之间的链条
sort by node 排序,重新排列节点
resver back 按倒序,重新排列节点(实现方法是:尾插)
resver front 按倒序,重新排列节点(实现方法是:头插)
clear 释放除了头节点之外的所有节点所占用的内存空间
destroy 释放所有节点的所占用的内存空间,包括头节点

seqnode.h

#ifndef __SEQNODE__
#define __SEQNODE__

#include <stdio.h>
#include <malloc.h>
#include <assert.h>
#include <memory.h>
#include <stdbool.h>

#define ElemType int

//Node代表节点,data是节点里保存的数据,next指针保存下一个节点的地址
typedef struct Node{
  ElemType data;
  struct Node* next;
}Node;

//NodeList代表链表,first指向头节点,last指向最后一个节点,size是链表里节点的个数
typedef struct NodeList{
  Node*  first;
  Node*  last;
  size_t size;
}NodeList;

void init(NodeList*);
void push_back(NodeList*, ElemType);
void push_front(NodeList*, ElemType);
void pop_back(NodeList*);
void pop_front(NodeList*);
void show_list(NodeList*);
void insert_val(NodeList*, ElemType);
Node* find(NodeList*, ElemType);
void delete_val(NodeList*, ElemType);
void sort(NodeList*);
void sort1(NodeList*);
void resver(NodeList*);
void resver1(NodeList*);
void resver2(NodeList*);
void clear(NodeList*);
void destroy(NodeList*);

#endif

seqnode.c

#include "seqnode.h"

//分配头节点的内存空间
void init(NodeList* list){
  list->first = (Node*)malloc(sizeof(Node));
  list->last = list->first;
  list->first->next = NULL;
  list->size = 0;
}

//从链表的最后插入节点
void push_back(NodeList* list, ElemType val){
  Node* p = (Node*)malloc(sizeof(Node));
  assert(NULL != p);
  p->data = val;
  p->next = NULL;

  list->last->next = p;
  list->last = p;
  list->size++;
}

void push_front(NodeList* list, ElemType val){
  Node* p = (Node*)malloc(sizeof(Node));
  p->data = val;
  
  //新插入节点的下一个节点指向原来链表中的第一个节点
  p->next = list->first->next;
  //头节点的next指向新插入的节点
  list->first->next = p;
  //如果是插入节点前的链表里没有如何节点,则必须要把last指向插入的节点
  if(list->size == 0){
    list->last = p;
  }
  list->size++;
}

void show_list(NodeList* list){
  Node* tmp = list->first->next;
  while(tmp != NULL){
    printf("%d->", tmp->data);
    tmp = tmp->next;
  }
  printf("NULL\n");
}

//删除最后的节点
void pop_back(NodeList* list){
  if(list->size == 0)return;
  Node* p = list->first;
  //寻找最后节点的前一个节点,当p->next == list->last,p就是最后节点的前一个节点。
  while(p->next != list->last){
    p = p->next;
  }
  //释放最后节点所占用的空间
  free(list->last);
  //p变成最后节点
  list->last = p;
  p->next = NULL;
  list->size--;
}

//删除第一个的节点
void pop_front(NodeList* list){
  if(list->size == 0)return;
  //p就是第一个节点
  Node* p = list->first->next;
  //把第二个节点变成第一个节点
  list->first->next = p->next;
  //如果链表里只有一个节点,则必须移动last
  if(list->size == 1){
    list->last = list->first;
  }
  list->size--;
  //释放第一个节点所占用的空间
  free(p);
}

//在合适的位置插入一个节点.
//比如原来的链表:1->3->NULL,当要插入的节点的值为2的时候,就会在1和3之间插入这个节点,插入后的链表:1->2->3->NULL
void insert_val(NodeList* list, ElemType val){
  //如果链表为空直接调用尾插
  if(list->size == 0){
    push_back(list, val);
    return;
  }
  Node* p = (Node*)malloc(sizeof(Node));
  p->data = val;
  Node* t = list->first;
  do{
    //t->next不是最后一个节点,并且在合适位置
    if(val >= t->data && t->next != NULL && val <= t->next->data){
      p->next = t->next;
      t->next = p;
      break;
    }
    //t->next是最后一个节点
    if(t->next == NULL){
      list->last->next = p;
      list->last = p;
      list->last->next = NULL;
      break;
    }
    t = t->next;
  }
  while(1);
  list->size++;
}
Node* find(NodeList* list, ElemType val){
  if(0 == list->size){
    return NULL;
  }
  Node* p = list->first->next;
  do{
    if(val == p->data){
      return p;
      break;
    }
    p = p->next;
  }
  while(NULL != p);
}
void delete_val(NodeList* list, ElemType val){
  if(0 == list->size)return;
  Node* p = list->first;
  do{
    if(p->next->data == val){
      //p->next是最后一个节点,所以必须移动last的指向
      if(NULL == p->next->next){
        list->last = p;
      }
      free(p->next);
      //p->next是要被删除的节点,所以p->next指向要被删除节点的下一个节点
      p->next = p->next->next;
      list->size--;
      break;
    }
    p = p->next;
  }while(NULL != p->next);
}

//利用find函数进行删除
void delete_val1(NodeList* list, ElemType val){
  if(0 == list->size)return;
  Node* p = find(list, val);
  if(NULL == p)return;
  //如果要被删除的节点是最后一个节点,就直接调用尾删。
  if(p == list->last){
    pop_back(list);
  }
  //find找到是要被删除的节点,但是不知道它前面的节点的地址,所以就不无法让它前面的节点的next指向它后面的节点
  //解决办法,把它后节点里的数据,赋给它,然后删除它后面的节点。如果它后面的节点是最后节点,必须修改last的指向。
  else{
    p->data = p->next->data;
    free(p->next);
    p->next = p->next->next;
    if(NULL == p->next){
      list->last = p;
    }
    list->size--;
  }
}
//不重新排列节点,只是修改节点里的值,用冒泡法排序。
void sort(NodeList* list){
  if(list->size == 0 || list->size == 1)return;
  Node* p = list->first->next;
  for(int i = 0; i < list->size-1; ++i){
    for(int j = 0; j < list->size-i-1; ++j){
      if(p->data > p->next->data){
        p->data = p->data + p->next->data;
        p->next->data = p->data - p->next->data;
        p->data = p->data - p->next->data;
      }
      p = p->next;
    }
    p = list->first->next;
  }
}

void insert_pnt(NodeList* list, Node* node){
  Node* t = list->first;
  do{
    if(t->next != NULL && node->data <= t->next->data){
      node->next = t->next;
      t->next = node;
      break;
    }
    if(t->next == NULL){
      list->last->next = node;
      list->last = node;
      list->last->next = NULL;
      break;
    }
    t = t->next;
  }
  while(1);
  list->size++;
}

//重新排列节点。思路:把链表分成2个链表,第一个链表留一个节点,利用insert_val,把剩下的节点再插回第一个节点
void sort1(NodeList* list){
  if(list->size == 0 || list->size == 1)return;

  list->size = 1;
  list->last = list->first->next;
  list->last->next = NULL;
    
  //n指向第二个节点
  Node* n = list->first->next->next;
  Node* t;
  while(NULL != n){
    //因为n>next在下面的insert_pnt里会被改变,所以提前把n->next方到t里保存
    t = n->next;
    insert_pnt(list, n);
    n = t;
  }
}
void push_back_pnt(NodeList* list, Node* node){
  list->last->next = node;
  list->last = node;
  list->last->next = NULL;
  list->size++;
}
//思路:把链表分成2个链表,第一个链表只有头几点,剩下的节点放在第二个链表,循环找第二个链表里的尾节点,利用尾插,把找到的尾节点插入回第一个链表。
void resver(NodeList* list){
  if(list->size == 0 || list->size == 1)return;

  Node* e = list->last;
  Node* b = list->first->next;
  Node* tmp = list->first;
  size_t sz = list->size;

  list->last = list->first;
  list->size = 0;

  while(sz-- > 0){
    //寻找最后一个节点,找到后修改e,让e为往前移动一个节点
    while(tmp->next != e && b != e){
      tmp = tmp->next;
    }
    if(b == e){
      push_back_pnt(list, b);
    }else{
      push_back_pnt(list, tmp->next);
    }
    //让e为往前移动一个节点
    e   = tmp;
    //让tmp再次指向第一个节点,目的是再从第一个节点开始,去寻找最后一个节点
    tmp = b;
  }
}

void push_front_pnt(NodeList* list, Node* node){
  node->next = list->first->next;
  list->first->next = node;
  list->size++;
}
//思路:把链表分成2个链表,第一个链表只有第一个节点,剩下的节点放在第二个链表,利用头插,把第二个链表里的节点再插入回第一个链表。
void resver1(NodeList* list){
  if(list->size == 0 || list->size == 1)return;

  Node* head = list->first->next->next;

  list->last = list->first->next;
  list->last->next = NULL;
  list->size = 1;

  Node* tmp;
  while(head != NULL){
    tmp = head->next;
    push_front_pnt(list, head);
    head = tmp;
  }
}
//和resver1的思路一样,但不调用push_front_pnt
void resver2(NodeList* list){
  if(list->size == 0 || list->size == 1)return;

  Node* p = list->first->next->next;
  list->last = list->first->next;
  list->last->next = NULL;

  Node* q;
  while(p != NULL){
    q = p->next;
    p->next = list->first->next;
    list->first->next = p;
    p = q;
  }
}

void clear(NodeList* list){
  if(list->size == 0) return;
  Node* b = list->first->next;
  Node* q;
  while(b != NULL){
    q = b->next;
    free(b);
    b = q;
  }
  list->last = list->first;
  list->last->next = NULL;
  list->size = 0;
}

void destroy(NodeList* list){
  Node* b = list->first;
  Node* q;
  while(b != NULL){
    q = b->next;
    free(b);
    b = q;
  }
}

seqnodemain.c

#include "seqnode.h"

int main(){
  NodeList list;
  init(&list);
  int select = 1;
  ElemType item;
  Node* node = NULL;
  while(select){
    printf("*****************************************\n");
    printf("*** [1]   push_back   [2]  push_front ***\n");
    printf("*** [3]   show_list   [4]  pop_back   ***\n");
    printf("*** [5]   pop_front   [6]  insert_val ***\n");
    printf("*** [7]   find        [8]  length     ***\n");
    printf("*** [9]   delete_val  [10] sort by val***\n");
    printf("*** [11]  sort by node[12] resver back***\n");
    printf("*** [13]  resver front[14] clear      ***\n");
    printf("*** [0]   quit        [15*]destroy    ***\n");
    printf("*****************************************\n");
    printf("请选择:>");
    scanf("%d", &select);
    if(0 == select)
      break;
    switch(select){
    case 1:
      printf("请输入要插入的数据,以-1结束>\n");
      while(scanf("%d",&item) && item != -1){
    push_back(&list, item);
      }
      show_list(&list);
      break;
    case 2:
      printf("请输入要插入的数据,以-1结束>\n");
      while(scanf("%d", &item) && item != -1){
    push_front(&list, item);
      }
      show_list(&list);
      break;
    case 3:
      show_list(&list);
      break;
    case 4:
      pop_back(&list);
      show_list(&list);
      break;
    case 5:
      pop_front(&list);
      show_list(&list);
      break;
    case 6:
      printf("请输入要插入的数据>\n");
      scanf("%d",&item);
      insert_val(&list, item);
      show_list(&list);
      break;
    case 7:
      printf("please enter what you shoule find out>\n");
      scanf("%d",&item);
      node = find(&list, item);
      if(node == NULL){
    printf("can not find %d\n", item);
      }
      break;
    case 8:
      printf("length is %ld\n", list.size);
      break;
    case 9:
      printf("please enter what you want to delete>\n");
      scanf("%d",&item);      
      delete_val(&list, item);
      show_list(&list);
      break;
    case 10:
      sort(&list);
      show_list(&list);
      break;
    case 11:
      sort1(&list);
      show_list(&list);
      break;
    case 12:
      resver(&list);
      show_list(&list);
      break;
    case 13:
      resver2(&list);
      show_list(&list);
      break;
    case 14:
      clear(&list);
      show_list(&list);
      break;
      //case 15:
      //destroy(&list);
      break;
    default:
      break;
    }
  }

  destroy(&list);
}