欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  后端开发

详谈Numpy中数组重塑、合并与拆分方法

程序员文章站 2022-04-11 23:48:42
...
下面为大家分享一篇详谈Numpy中数组重塑、合并与拆分方法,具有很好的参考价值,希望对大家有所帮助。一起过来看看吧

1.数组重塑

1.1一维数组转变成二维数组

通过reshape( )函数即可实现,假设data是numpy.array类型的一维数组array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),现将其转变为2行5列的二维数组,代码如下:

data.reshape((2,5))

作为参数的形状的其中一维可以是-1,它表示该维度的大小由数据本身推断而来,因此上面代码等价于:

data.reshape((2,-1))

1.2二维数组转换成一维数组

将多维数组转换成一维数组的运算通常称为扁平化(flattening)或散开(raveling),因此有两个函数可供选择。执行代码如下:

data.ravel() # 不会产生源数据的副本
data.flatten() # 总是返回数据的副本

关于这两点的区别,理解的不是很透彻。有人懂得话,欢迎评论交流。

2.数组的合并和拆分

2.1数组的合并

numpy提供许多数组合并的方法,这里只介绍最为常用的一种,即concatenate方法,代码如下:

arr1 = np.array([[1,2,3], [4,5,6]])
arr2 = np.array([[7,8,9], [10,11,12]])
data = np.concatenate([arr1, arr2], axis=0) # axis参数指明合并的轴向,0表示按行,1表示按列

2.2数组的拆分

这里只介绍split函数

np.split(data, [1], axis=0)#data为拆分的数组,[1]为拆分的行号或列号,axis表明按列或者行进行拆分(默认为0,即按行拆分)

相关推荐:

对numpy中数组元素的统一赋值实例

浅谈numpy数组的几种排序方式_python

以上就是详谈Numpy中数组重塑、合并与拆分方法的详细内容,更多请关注其它相关文章!