欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python Pivot table透视表使用方法解析

程序员文章站 2022-04-11 13:13:27
pivot 及 pivot_table函数用法pivot和pivot_table函数都是对数据做透视表而使用的。其中的区别在于pivot_table可以支持重复元素的聚合操作,而pivot函数只能对不...

pivot 及 pivot_table函数用法

pivot和pivot_table函数都是对数据做透视表而使用的。其中的区别在于pivot_table可以支持重复元素的聚合操作,而pivot函数只能对不重复的元素进行聚合操作。

在一般的日常业务中,因为pivot_table的功能更为强大,pivot能做的不能做的pivot_table都可做。所以只需要记住pivot_table函数用法就好了。

pivot函数的使用演示

#%%

import pandas as pd

df01 = pd.dataframe(
  {
    "年份":[2019,2019,2019,2020,2020,2020],
    "平台":["京东","淘宝","拼多多","京东","淘宝","拼多多"],
    "销量":[100,200,300,400,500,600]
  }
)

df01

#%%

pd.pivot(df01,
     index = "年份",
     columns = "平台",
     values = "销量")

#%%

聚合后结果

Python Pivot table透视表使用方法解析

pivot_table函数的使用演示

注释:index指定什么元素作为index显示,columns指定列,values指定统计的值。一般values都为int后者float类型的值。aggfunc为聚合函数可以指定(mean,sum,min,max等统计运算等函数,如果不指定默认为mean均值)

df02 = pd.dataframe(
  {
    "年份":[2019,2019,2019,2019,2020,2020,2020,2020],
    "平台":["京东","淘宝","淘宝","拼多多","京东","淘宝","拼多多","拼多多"],
    "销量":[100,200,300,400,500,600,700,800]
  }
)
df02
#%%
#pivot_table用的很多.因为可以对重复的元素进行聚合操作.而pivot函数只能对不重复的行进行运算

pd.pivot_table(df02,
        index="年份",
        columns="平台",
        values="销量",
        aggfunc=sum #聚合函数来对销量进行运算.可以指定最大,最小,平均值等函数.默认为mean平均值
)
#%%

聚合结果

Python Pivot table透视表使用方法解析

对比结果:这里要强调一点的是,2020年平台为拼多多的数据出现了2次,而且2次的值不同。在pivot函数中是无法对这种重复平台的数据进行聚合的,但是pivot_table则可以。

另外通过聚合函数aggfunc指定sum求和,可以把2次的值累加统计。

pivot_table函数真实案例演示

1. 读取表格数据

#%%
df = pd.read_excel("./datas/result_datas.xlsx",
         ).convert_dtypes()  #读取数据并自动转化type
df.dtypes
#%%
df.head(3)
#%%

Python Pivot table透视表使用方法解析

2. 通过pivot_table函数透视合并数据并对金额和数量做统计

因为涉及到敏感信息,因此服务卡卡号等敏感信息部分遮掩不显示。但是通过部分结果也可以看出是按照号码进行升序排序的

#按照自定义指定index,columns,values值
result = pd.pivot_table(df,
        index = ["姓名","服务卡卡号","明细","规格"],
        values = ["理赔金额(元)","数量"],
        aggfunc=sum
        )
result = result.sort_values("服务卡卡号") #按照指定values值排序
result

#%%

#输出到文件
result.to_excel("./datas/output_datas.xlsx")
print("done!!!")

Python Pivot table透视表使用方法解析

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。