用Python帮你上马,哪里无码打哪里
目录
0 引言
1 环境
2 需求分析
3 代码实现
4 代码全景展示
5 后记
0 引言
所谓的像素图,就是对图像做一个颗粒化的效果,使其产生一种妙不可言的朦胧感。费话不多说,先来看一张效果图。
▲原图
怎么样,效果还不错吧?现在,我们用python来实现这种像素化的效果。
1 环境
操作系统:windows
python版本:3.7.3
2 需求分析
一个最简单的实现思路,在打开图片后,把图片分割成一些像素块,再对这些像素块中的图像信息进行处理(修改图像中的rgb值)即可。
这里我们使用numpy库和pil库来实现这个需求,后者用来图像的读取与保存,涉及到的所有图像处理动作均借助numpy来实现。
有关numpy模块、pil模块的介绍,可参考如下。
numpy(numerical python) 是 python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。
pil(python imaging library)是python常用的图像处理库,而pillow是pil的一个友好fork,提供了了广泛的文件格式支持,强大的图像处理能力,主要包括图像储存、图像显示、格式转换以及基本的图像处理操作等。
这两个模块非python内置,都属于第三方模块,可直接采用如下方式进行安装
pip install numpy pip install pillow
注意,要想使用pil模块,是需要直接install pillow模块的。
3 代码实现
首先导入我们要用到的模块
import numpy as np from pil import image
接下来,我们要处理图片,首先得打开一张图片,如下
data = image.open("p:\\personal\\luoshen.xpg")
然后把图像转换化numpy数组进行下一步的处理
im1 = np.array(data)
这里处理的核心思想,也很简单,主要通过中间值的rgb,对所选范围块的rgb进行重新赋值。
im1[y:y + pixel, x:x + pixel] = im1[y + (pixel // 2)][x + (pixel // 2)]
这里的x、y是分别指的我们图像的横向、纵向像素点的坐标值、而pixel指的是我们要以多大的像素块,来处理这张图像,我们设置的单位像素块(pixel数值)越小,生成的像素图越精确。
当然了,若单位像素块设置的太小,生成图像就看不出效果了,至于多大的数值合适,需要自行尝试。不同尺寸的图像,要达到最佳的像素化的显示效果,所需要设置的单位像素块的大小也是不同的,实践出真知。
我们需要图像的指定一个处理范围,并对该范围内的每一个坐标(像素)点进行像素化的处理。
for y in range(start_coordinate[1], end_coordinate[1], pixel): for x in range(start_coordinate[0], end_coordinate[0], pixel): pass
在处理完成之后,我们再把numpy数组转换回图像。
im2 = image.fromarray(im1.astype(np.uint8))
最后展示出处理后的图像
im2.show()
4 代码全景展示
import numpy as np from pil import image def to_pixelblock(pixel, start_coordinate, end_coordinate): ''' :param pixel: 单位像素块的元素大小 :param start_coordinate: 处理的起始坐标(像素)点,元组形式 :param end_coordinate: 处理的终止坐标(像素)点,元组形式 :return: 通过中间值的rgb,对所选范围块的rgb进行重新赋值,设置的单位像素块(pixel数值)越小,生成的像素图越精确 ''' # 读取图片,并由 pil image 转换为 numpy array im1 = np.array(image.open("p:\\personal\\luoshen.jpg")) # 遍历所要处理范围内的所有坐标(像素)点 for y in range(start_coordinate[1], end_coordinate[1], pixel): for x in range(start_coordinate[0], end_coordinate[0], pixel): # 通过中间值的rgb,对所选范围块的rgb进行重新赋值 im1[y:y + pixel, x:x + pixel] = im1[y + (pixel // 2)][x + (pixel // 2)] # 将numpy array 转换为 pil image im2 = image.fromarray(im1.astype(np.uint8)) # 展示处理后的图像 im2.show() if __name__ == '__main__': # 设置好要处理的像素范围,并以多大的像素块来生成最终效果图 to_pixelblock(10, (0, 0), (1280, 800)
5 后记
本文使用了pil加上numpy的配合,短短几行代码实现了图像像素化的处理。当然这只是一种简单地实现,要想实现更丰富的处理效果,还可以借助cv2来实现。
好了,以上就是本篇全部内容。
公众号「python专栏」后台回复:「马赛克」,获取本文所涉及的完整代码。