欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

大数据从入门到精通

程序员文章站 2022-04-10 20:38:53
大数据被认为是“未来的新石油”,在社会生产、流通、分配、消费活动以及经济运行机制等方面发挥着重要的作用。 作为 IT 类职业中的“大熊猫”,大数据工程师的收入待遇可以说达到了同类的*。国内 IT、通讯、行业招聘中,有 10% 都是和大数据相关的,且比例还在上升。“大数据时代的到来很突然,在国内发展 ......

大数据被认为是“未来的新石油”,在社会生产、流通、分配、消费活动以及经济运行机制等方面发挥着重要的作用。

作为 it 类职业中的“大熊猫”,大数据工程师的收入待遇可以说达到了同类的*。国内 it、通讯、行业招聘中,有 10% 都是和大数据相关的,且比例还在上升。“大数据时代的到来很突然,在国内发展势头激进,而人才却非常有限,现在完全是供不应求的状况。

所有从底层数据工作者往上发展的基本路径:

很多初学者,对大数据的概念都是模糊不清的,大数据是什么,能做什么,学的时候,该按照什么线路去学习,学完往哪方面发展,想深入了解,想学习的同学欢迎加入大数据学习扣群:458345782,有大量干货(零基础以及进阶的经典实战)分享给大家,并且有清华大学毕业的资深大数据讲师给大家免费授课,给大家分享目前国内最完整的大数据高端实战实用学习流程体系

1. 第一阶段(一般岗位叫数据专员)

基本学会excel(vba最好学会;会做透视表;熟练用筛选、排序、公式),做好ppt。这样很多传统公司的数据专员已经可以做了

2. 第二阶段(数据专员~数据分析师)

这一阶段要会sql,懂业务,加上第一阶段的那些东西。大多数传统公司和互联网小运营、产品团队够用了。

3. 第三阶段(数据分析师)

统计学熟练(回归、假设检验、时间序列、简单蒙特卡罗),可视化,ppt和excel一定要溜。这些技术就够了,能应付大多数传统公司业务和互联网业务。

4. 第四阶段(分裂)

数据分析师(数据科学家)、bi等:这部分一般是精进统计学,熟悉业务,机器学习会使用(调参+选模型+优化),取数、etl、可视化啥的都是基本姿态。

可视化工程师:这部分国内比较少,其实偏重前端,会high charts,d3.js, echarts.js。技术发展路线可以独立,不在这四阶段,可能前端转行更好。

etl工程师:顾名思义,做etl的。

大数据工程师:熟悉大数据技术,hadoop系二代。

数据工程师(一部分和数据挖掘工程师重合):机器学习精通级别(往往是几种,不用担心不是全部,和数据分析师侧重点不同,更需要了解组合模型,理论基础),会组合模型形成数据产品;计算机基本知识(包括linux知识、软件工程等);各类数据库(rdbms、nosql(4大类))

数据挖掘:和上基本相同。

爬虫工程师:顾名思义,最好http协议、tcp/ip协议熟悉。技术发展路线可以独立,不在这四阶段。

往数据发展的基本学习路径可以概括为以下内容:

1. excel、ppt(必须精通)

数据工作者的基本姿态,话说本人技术并不是很好,但是起码会操作;要会大胆秀自己,和业务部门交流需求,展示分析结果。技术上回vba和数据透视就到顶了。

2. 数据库类(必须学)

初级只要会rdbms就行了,看公司用哪个,用哪个学哪个。没进公司就学mysql吧。

nosql可以在之后和统计学啥的一起学。基本的nosql血mongodb和redis(缓存,严格意义上不算数据库),然后(选学)可以了解各类nosql,基于图的数据库neo4j,基于column的数据库bigtable,基于key-value的数据库redis/cassendra,基于collection的数据库mongodb。

3. 统计学(必须学)

如果要学统计学,重要概念是会描述性统计、假设检验、贝叶斯、极大似然法、回归(特别是广义线性回归)、主成分分析。这些个用的比较多。也有学时间序列、bootstrap、非参之类的,这个看自己的意愿。

其他数学知识:线性代数常用(是很多后面的基础),微积分不常用,动力系统、傅里叶分析看自己想进的行业了。

4. 机器学习(数据分析师要求会选、用、调)

常用的是几个线性分类器、聚类、回归、随机森林、贝叶斯;不常用的也稍微了解一下;深度学习视情况学习。

5. 大数据(选学,有公司要求的话会用即可,不要求会搭环境)

hadoop基础,包括hdfs、map-reduce、hive之类;后面接触spark和storm再说了。

6. 文本类(选学,有公司要求的话会用即可)

这部分不熟,基本要知道次感化、分词、情感分析啥的。

7. 工具类

语言:非大数据类r、python最多(比较geek的也有用julia的,不差钱和某些公司要求的用sas、matlab);大数据可能还会用到scala和java。

可视化(选学):tableau、http://plot.ly、d3.js、echarts.js,r里面的ggplot、ggvis,python里的bokeh、matplotlib、seaborn都不错

数据库语言:看你自己用啥学啥

其他框架、类库(选学):爬虫(requests、beautifulsoup、scrapy),日志分析

推荐一个大数据学习群 142974151每天晚上20:10都有一节【免费的】大数据直播课程,专注大数据分析方法,大数据编程,大数据仓库,大数据案例,人工智能,数据挖掘都是纯干货分享,