欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

实现用python算法计算圆周率的小诀窍

程序员文章站 2022-03-04 15:06:15
目录一、圆周率的历史1、中国魏晋时期,刘徽曾用使正多边形的边数逐渐增加去逼近圆周的方法 (即「割圆术」),求得π的近似值3.1416。汉朝时,张衡得出π的平方除以16等于5/8,即π等于10的开方(约...

一、圆周率的历史

1、中国

魏晋时期,刘徽曾用使正多边形的边数逐渐增加去逼近圆周的方法 (即「割圆术」),求得π的近似值3.1416。

汉朝时,张衡得出π的平方除以16等于5/8,即π等于10的开方(约为3.162)。虽然这个值不太准确,但它简单易理解,所以也在亚洲风行了一阵。

王蕃(229-267)发现了另一个圆周率值,这就是3.156, 但没有人知道他是如何求出来的(ps. 没开源呗!)。

公元5世纪,祖冲之和他的儿子以正24576边形,求出圆周率约为355/113,和真正的值相比,误差小于八亿分之一。

这个纪录在一千年后才给打破。(ps. 在大部分人不知股股定理年代,真牛!)

2、印度

约在公元530年,数学大师阿耶波多利用384边形的周长,算出圆周率约为√9.8684。

婆罗门笈多采用另一套方法,推论出圆周率等于10的平方根。(ps. 跟张衡大佬的结果一致,但过程不同)

3、欧洲

斐波那契算出圆周率约为3.1418。

韦达用阿基米德的方法,算出3.1415926535<π<3.1415926537。

他是第一个以无限乘积叙述圆周率的人。

鲁道夫万科伦以边数多过32000000000的多边形算出有35个小数位的圆周率。

华理斯在1655年求出一道公式π/2=2×2×4×4×6×6×8×8...../3×3×5×5×7×7×9×9......

欧拉发现的e的iπ次方加1等于0,成为证明π是超越数的重要依据。

二、用python计算圆周率π

【方法】

蒙特卡洛法

【程序设计思路】

使用python random库随机生成点,落在正方形内,计算正方形内的圆内落点与正方形内落点之比,近似为面积之比,随机数越随机,数量越大越准确。

【软件环境】

python 3.6(本程序可兼容python 2.x)

【代码】

from random import random
from time import perf_counter
 
def calpi(n = 100):
    hits = 0
    start = perf_counter()
    for i in range(1, n*n+1):
        x, y = random(), random()
        dist = pow(x ** 2 + y ** 2, 0.5)
        if dist <= 1.0:
            hits += 1
    pi = (hits * 4) / (n * n)
    use_time = perf_counter() - start
    return pi, use_time
 
pi, use_time = calpi(10000)
print('use monte carlo method to calculate pi: {}'.format(pi))
print('use time: {} s'.format(use_time))

【结果展示】

实现用python算法计算圆周率的小诀窍

震惊:10000次随机数,精确到3.1415了,把桥哥放在1000年前,可不得了

【常见问题答疑】

(每篇文章都有很多粉丝私信我,提前答疑一下!!):

1、运行程序前,先导入顶部的包,怎么导包看这里:

2、本文使用的random 和 time库为python自带,无需导入,可直接执行程序。

以上就是实现用python算法计算圆周率的小诀窍的详细内容,更多关于python算法计算圆周率的资料请关注其它相关文章!