欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  php教程

GIT 传输协议实现

程序员文章站 2022-04-10 14:37:39
...

GIT 传输协议实现

在 GIT 的三种主流传输协议 HTTP SSH GIT 中,GIT 协议是最少被使用的协议(也就是 URL 以 git:// 开始的协议)。 这是由于 git 协议的权限控制几乎没有,要么全部可读,要么全部可写,要么全部可读写。所以对于代码托管平台来说, git 协议的目的仅仅是为了支持 公开项目的只读访问。

在 git 的各种传输协议中,git 协议无疑是最高效的,HTTP 受限于 HTTP 的特性,传输过程需要构造 HTTP 请求和响应。 如果是 HTTPS 还涉及到加密解密。另外 HTTP 的超时设置,以及包体大小限制都会影响用户体验。

而 SSH 协议的性能问题主要集中在加密解密上。当然相对于用户的信息安全来说,这些代价都是可以接受。

git 协议实际上相当于 SSH 无加密无验证,也就无从谈起权限控制,但实际上代码托管平台内部的一些同步服务,如果使用 git 协议实现,将会得到很大的性能提升。

传输协议规范

git 协议的技术文档可以从 git 源码目录的 Documentation/technical 找到,即 Packfile transfer protocols 创建 TCP 连接后,git 客户端率先发送请求体,请求格式基于 BNF 的描述如下:

git-proto-request = request-command SP pathname NUL [ host-parameter NUL ]
request-command   = "git-upload-pack" / "git-receive-pack" / "git-upload-archive"   ; case sensitive
pathname          = *( %x01-ff ) ; exclude NUL
host-parameter    = "host=" hostname [ ":" port ]

一个例子如下:

0033git-upload-pack /project.git\0host=myserver.com\0

在 git 的协议中,pkt-line 是非常有意思的设计,行前 4 个字节表示整个行长,长度包括其前 4 字节, 但是有个特例,0000 其代表行长为 0,但其自身长度是 4。

下面是一个关于请求的结构体:

struct GitRequest{
    std::string command;
    std::string path;
    std::string host;
};

git 有自带的 git-daemon 实现,这个服务程序监听 9418 端口,在接收到客户端的请求后,先要判断 command 是 否是被允许的,git 协议中有 fetch 和 push 以及 archive 之类的操作,分别对应的服务器上的命令是 git-upload-pack git-receive-pack git-upload-archive。HTTP 只会支持前两种,SSH 会支持三种,而 代码托管平台的 git 通常支持的 是 git-upload-pack git-upload-archive。

当不允许的命令被接入时需要发送错误信息给客户端,这个信息在不同的 git-daemon 实现中也不一样,大体 如下所示。

001bERR service not enabled

git-daemon 将对请求路径进行转换,以期得到在服务器上的绝对路径,同时可以判断路径是否存在,不存在时 可以给客户端发送 Repository Not Found。而 host 可能时域名也可能时 ip 地址,当然也可以包括端口。 服务器可以在这里做进一步的限制,出于安全考虑应当考虑到请求是可以被伪造的。

客户端发送请求过去后,服务器将启动相应的命令,将命令标准错误和标准输出的内容发送给客户端,将客户端 传输过来的数据写入到命令的标准输入中来。

在请求体中,命令为 git-upload-pack /project.git 在服务器上运行时,就会类似

git-upload-pack ${RepositoriesRoot}/project.git

出于限制连接的目的,一般还会添加 --timeout=60 这样的参数。timeout 并不是整个操作过程的超时。

与 HTTP 不同的是,git 协议的命令中没有参数 --stateless-rpc 和 --advertise-refs ,在 HTTP 中,两个参数都存在时, 只输出存储库的引用列表与 capabilities,与之对于的是 GET /repository.git/info/refs?service=git-upload(receive)-pack , 当只有 --stateless-rpc 时,等待客户端的数据,然后解析发送数据给客户端,,与之对应的是 POST /repository.git/git-upload(receive)-pack。

进程输入输出的读写

在 C 语言中,有 popen 函数,可以创建一个进程,并将进程的标准输出或标准输入创建成一个文件指针,即 FILE*其他可以使用 C 函数的语言很多也提供了类似的实现,比如 Ruby,基于 Ruby 的 git HTTP 服务器 grack 正是使用 的 popen,相比与其他语言改造的 popen,C 语言中 popen 存在了一些缺陷,比如无法同时读写,如果要输出标准 错误,需要在命令参数中额外的将标准错误重定向到标准输出。

在 musl libc 的中,popen 的实现如下:

FILE *popen(const char *cmd, const char *mode)
{
    int p[2], op, e;
    pid_t pid;
    FILE *f;
    posix_spawn_file_actions_t fa;

    if (*mode == 'r') {
        op = 0;
    } else if (*mode == 'w') {
        op = 1;
    } else {
        errno = EINVAL;
        return 0;
    }

    if (pipe2(p, O_CLOEXEC)) return NULL;
    f = fdopen(p[op], mode);
    if (!f) {
        __syscall(SYS_close, p[0]);
        __syscall(SYS_close, p[1]);
        return NULL;
    }
    FLOCK(f);

    /* If the child's end of the pipe happens to already be on the final
     * fd number to which it will be assigned (either 0 or 1), it must
     * be moved to a different fd. Otherwise, there is no safe way to
     * remove the close-on-exec flag in the child without also creating
     * a file descriptor leak race condition in the parent. */
    if (p[1-op] == 1-op) {
        int tmp = fcntl(1-op, F_DUPFD_CLOEXEC, 0);
        if (tmp < 0) {
            e = errno;
            goto fail;
        }
        __syscall(SYS_close, p[1-op]);
        p[1-op] = tmp;
    }

    e = ENOMEM;
    if (!posix_spawn_file_actions_init(&fa)) {
        if (!posix_spawn_file_actions_adddup2(&fa, p[1-op], 1-op)) {
            if (!(e = posix_spawn(&pid, "/bin/sh", &fa, 0,
                (char *[]){ "sh", "-c", (char *)cmd, 0 }, __environ))) {
                posix_spawn_file_actions_destroy(&fa);
                f->pipe_pid = pid;
                if (!strchr(mode, 'e'))
                    fcntl(p[op], F_SETFD, 0);
                __syscall(SYS_close, p[1-op]);
                FUNLOCK(f);
                return f;
            }
        }
        posix_spawn_file_actions_destroy(&fa);
    }
fail:
    fclose(f);
    __syscall(SYS_close, p[1-op]);

    errno = e;
    return 0;
}

在 Windows Visual C++ 中,popen 源码在 C:\Program Files (x86)\Windows Kits\10\Source\${SDKVersion}\ucrt\conio\popen.cpp , 按照 MSDN 文档说明,Windows 32 GUI 程序,即 subsystem 是 Windows 的程序,使用 popen 可能导致程序无限失去响应。

所以在笔者实现 git-daemon 及其他 git 服务器时,都不会使用 popen 这个函数。

为了支持跨平台和简化编程,笔者在实现 svn 代理服务器时就使用了 Boost Asio 库,后来也用 Asio 实现过一个 git 远程命令服务, 每一个客户端与服务器连接后,服务器启动程序,需要创建 3 条管道,分别是 子进程的标准输入 输出 错误,即 stdout stdin stderr, 然后注册读写异步事件,将子进程的输出与错误写入到 socket 发送出去,读取 socket 写入到子进程的标准输入中。

在 POSIX 系统中,boost 有一个文件描述符类 boost::asio::posix::stream_descriptor 这个类不能是常规文件,以前用 go 做 HTTP 前端 没注意就 coredump 掉。

在 Windows 系统中,boost 有文件句柄类 boost::asio::windows::stream_handle 此处的文件应当支持随机读取,比如命名管道(当然 在 Windows 系统的,匿名管道实际上也是命名管道的一种特例实现)。

以上两种类都支持 async_read async_write ,所以可以很方便的实现异步的读取。

上面的做法,唯一的缺陷是性能并不是非常高,代码逻辑也比较复杂,当然好处是,错误异常可控一些。

在 Linux 网络通信中,类似与 git 协议这样读取子进程输入输出的服务程序的传统做法是,将 子进程的 IO 重定向到 socket, 值得注意的是 boost 中 socket 是异步非阻塞的,然而,git 命令的标准输入标准错误标准输出都是同步的,所以在 fork 子进程之 前,需要将 socket 设置为同步阻塞,当 fork 失败时,要设置回来。

socket_.native_non_blocking(false);

另外,为了记录子进程是否异常退出,需要注册信号 SIGCHLD 并且使用 waitpid 函数去等待,boost 就有 boost::asio::signal_set::async_wait 当然,如果你开发这样一个服务,会发现,频繁的启动子进程,响应信号,管理连接,这些操作才是性能的短板。

一般而言,Windows 平台的 IO 并不能重定向到 socket,实际上,你如果使用 IOCP 也可以达到相应的效率。还有,Windows 的 socket API WSASocket WSADuplicateSocket 复制句柄 DuplicateHandle ,这些可以好好利用。

其他

对于非代码托管平台的从业者来说,上面的相关内容可能显得无足轻重,不过,网络编程都是殊途同归,最后核心理念都是类似的。关于 git-daemon 如果笔者有时间会实现一个跨平台的简易版并开源。