欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

EF查询百万级数据的性能测试--单表查询

程序员文章站 2022-04-10 12:16:53
一、起因 个人还是比较喜欢EF的,毕竟不用写Sql,开发效率高,操作简单,不过总是听人说EF的性能不是很好,也看过别人做的测试,但是看了就以为真的是那样。但是实际上到底是怎么样,说实话我真的不知道。我只知道选什么的框架是基于实际情况的,博主在一个创业公司上班,选的就是EF框架,刚做了一个项目,数据也 ......

一、起因 

   个人还是比较喜欢EF的,毕竟不用写Sql,开发效率高,操作简单,不过总是听人说EF的性能不是很好,也看过别人做的测试,但是看了就以为真的是那样。但是实际上到底是怎么样,说实话我真的不知道。我只知道选什么的框架是基于实际情况的,博主在一个创业公司上班,选的就是EF框架,刚做了一个项目,数据也就几万不到,感觉性能没那么差劲。于是,就想多弄点数据测试一下。再说一遍,本着 求真务实的方针,是针对现实中的业务需求来测试的,不是来单比性能的。你要是做个ERP系统,都去考虑千万级并发的架构,那当我没说。毕竟不是基于实际项目的框架选择都是耍流氓。

二、声明

         基于实际的项目,考虑到博主一般的遇到的上线项目对于数据的增删改操作时,操作的数据一般都是一个,两个,多了有十几个,对于一下同时提交几十个数据进行增删改的,原谅博主还没有见过,更有甚者,提交几百个数据进行增删改,博主想也是没有想过。但是在这个数量级下的增删改操作,我相信EF还是能够胜任的,所以本文不再测试EF的增删改性能,因为感觉完全能够满足一般项目的需要。本文只测试EF的单表查询功能,之后有时间会做复杂的链接查询的测试。

三、测试条件

 EF查询百万级数据的性能测试--单表查询

      EF查询百万级数据的性能测试--单表查询

    老百姓的配置,自己的工作电脑。

    Sql Server 2012,Entity Framework 6.1.3。

四、测试数据

  鉴于以前看过的测试都是两三个字段,且数据过于简单,以防有这方面的影响,又因为实际项目中的字段可能较多,而且数据量也比较复杂,就模拟了一个较为接近的数据表,再说一遍,本着求真务实的革命主义方针,针对现实的项目来测试。

    EF查询百万级数据的性能测试--单表查询

    数据量100W

    EF查询百万级数据的性能测试--单表查询

五、开始测试

    做了一个WinForm的测试,界面如下

    EF查询百万级数据的性能测试--单表查询

    1.进行Find测试,随机生成id,左边显示查询用时,先上代码。

    

 1       private PortalContext db = new PortalContext();
 2         private int count = 0;
 3         private TimeSpan ts = new TimeSpan();
 4         private void btnFind_Click(object sender, EventArgs e)
 5         {
 6 
 7             count++;
 8             Random r = new Random();
 9             var id = r.Next(0, 1000000);
10             txtId.Text = id.ToString();
11 
12             Stopwatch sw = new Stopwatch();
13             sw.Start();
14             var user = db.Users.Find(id);
15             sw.Stop();
16 
17             txtUserInfo.Text = UserToString(user);
18             ts += sw.Elapsed;
19             string time = sw.Elapsed + "(" + sw.Elapsed.Seconds + "s" + sw.Elapsed.Milliseconds + "ms)";
20             txtDisplay.AppendText("Find查询id(" + id + ")用时:" + time + Environment.NewLine);
21             txtData.Text = "执行" + count + "次,平均耗时" + new TimeSpan((ts.Ticks / count));
22         }

 

    结果如下:

    EF查询百万级数据的性能测试--单表查询

    可以看出,在100w数据的情况下,利用Find根据主键id查询根本无压力,至于第一次很长时间,应该是连接数据花费了一些时间。

   2.进行Where测试,代码如下。

 1         private void btnWhere_Click(object sender, EventArgs e)
 2         {
 3 
 4           
 5             bool[] valids = new bool[] { false, true };
 6             string[] works = new[] { "程序猿", "攻城狮", "产品汪", "键盘侠", "代码狗" };
 7             UserType[] userTypes = new[] { UserType.合作方, UserType.普通用户, UserType.律师 };
 8             Random r = new Random();
 9 
10             int num = r.Next(0, 4680);
11             int num2 = r.Next(0, 4680);
12 
13             int max = Math.Max(num, num2);
14             int min = Math.Min(num, num2);
15          
16             bool isValid = valids[num % 2];
17             string work = works[num % 5];
18             UserType type = userTypes[num % 2];
19 
20             txtIsValid.Text = isValid.ToString();
21             txtWork.Text = work;
22             txtUserType.Text = type.ToString();
23             txtAmountMin.Text = min.ToString();
24             txtAmountMax.Text = max.ToString();
25 
26             Stopwatch sw = new Stopwatch();
27             sw.Start();
28             var query = db.Users.Where(u => true);
29             var queryWhere = query.Where(u =>u.UserType == type &&u.IsValid == isValid && u.Work == work && (u.Amount >= min && u.Amount <= max)).Take(1000);
30             var list = queryWhere.ToList();
31             sw.Stop();
32 
33             labelWhere.Text = string.Format("where(u=> u.UserType=={0} && u.IsValid =={1} && u.Work == {2} u.Amount >= {3} && u.Amount <={4}).Take(1000)",
34                     type,isValid,work, min, max);
35 
36             string time = sw.Elapsed + "(" + sw.Elapsed.Seconds + "s" + sw.Elapsed.Milliseconds + "ms)";
37             txtDisplay.AppendText("Where查询到"+list.Count()+"条数据,用时:" + time + Environment.NewLine);
38 
39         }

 

  在这里用Where获取了前1000条数据,实际项目中基本不可能这样来,或者全部ToList()出来,考虑到项目中有些情况下确实需要全部ToList()出来一些数据,但是取1000条应该足够了,对于其他情况下来讲,这项测试没有太大的意义,我们等会看分页的性能。

  EF查询百万级数据的性能测试--单表查询

   附上一些全部ToList()出来时的测试:

  EF查询百万级数据的性能测试--单表查询

  当然实际是不可能这样玩的,也就看看,看了一下内存,3w多条数据也就30M左右。

  附:Where查询的一些优化,其实这个之前是知道的,忘了往上贴了,谢谢@搵中求胜 博友的提醒,再次接着机会又测试了一下。

  1.200w的数据(数据大才能体现出来效果),在没有AsNoTracking的情况下

  EF查询百万级数据的性能测试--单表查询

  2.加上了AsNoTracking(),一般我们的查询基本上不用跟踪只要数据就行了。可以看出来性能明显提高,同样的数据,将近提高了一般的性能。

1 var query = db.Users.AsNoTracking().Where(u => true);
2 var queryWhere = query.Where(u =>u.UserType == type &&u.IsValid == isValid && u.Work == work && (u.Amount >= min && u.Amount <= max));

 

 EF查询百万级数据的性能测试--单表查询

 3.还有,许多情况下我们不需要全部的数据,直接先用Select()选出来一些需要的字段,也会提高不少性能。

1 var query = db.Users.AsNoTracking().Where(u => true);
2 var queryWhere = query.Where(u =>u.UserType == type &&u.IsValid == isValid && u.Work == work && (u.Amount >= min && u.Amount <= max))
3          .Select(u=>new
4                 {
5                     u.Id,
6                     u.UserName
7                 });
8 var list = queryWhere.ToList();

 

 EF查询百万级数据的性能测试--单表查询

 3.Any,First ,Count的测试

  代码都基本一样,这里只附上一些图片参考。

  EF查询百万级数据的性能测试--单表查询

  EF查询百万级数据的性能测试--单表查询

  EF查询百万级数据的性能测试--单表查询

  上边的都能查询存在不存在,但是相比来说,Any,First 对于存在的情况下,性能很好,而count对于不存在时性能却很好,我也不知道为什么的。感觉有时候真的可以用Count查询存在不存在的,毕竟平均效果好。PS:以前看一篇文章说Count比Any差了不知道多少倍,查询存在不存在推荐用Any。现在看来,也差不多啊。

  4.分页查询。

  从实际项目来看,用户在看分页数据时,一般都是翻看前10页左右,而且每页的数据量也大概在10-30个之间,太多了没必要。所有分页的pageIndex和pageSize都设置在了这些数据之间,可能页码的大小pageIndex,pageSize过大的时候也会影响性能,这个我们随后再加以测试。

  EF查询百万级数据的性能测试--单表查询

  200ms左右吧,基本还说的过去,可能是在排序的问题上花费了太多的时间。

  附上一张pageIndex比较大的测试结果(pageIndex在800-1000之间),果然页码比较大的时候花费时间变长了,pageSize就不用说了,肯定时间也会变长。

  EF查询百万级数据的性能测试--单表查询

  5.Contains查询

   这里代码稍微做了改动,感觉也跟这个没关系 

 private void btnContains_Click(object sender, EventArgs e)
 {
            string[] usernames = new[] { "zhao", "wang", "li", "san", "zhaoliu" };
            bool[] valids = new bool[] { false, true };
            string[] works = new[] { "序猿", "攻城", "产品汪", "盘侠", "代码" };
        ....
    //全名称改成了部分名称,能保证是模糊查询吧。。[笑]  
 }

 

 

 

    EF查询百万级数据的性能测试--单表查询

    感觉确实有点慢,500ms左右,毕竟Contains,毕竟like,毕竟100w数据吧,有些条件下还是可以接受的,毕竟方便,做个自己用的查询还是可以的。

  六、数据量加大

  既然是百万级别,也不能只有一百万。

   1.二百万的数据

   EF查询百万级数据的性能测试--单表查询

   EF查询百万级数据的性能测试--单表查询  EF查询百万级数据的性能测试--单表查询EF查询百万级数据的性能测试--单表查询

   EF查询百万级数据的性能测试--单表查询EF查询百万级数据的性能测试--单表查询EF查询百万级数据的性能测试--单表查询

   总结一下:

    Find无压力,没区别,大概是因为主键索引的缘故。

    Any,First,Count都还在100ms左右,还能用。

    分页已经到了400ms,感觉已经不能接受了。但是我真的还没咋见过能分几千页的,这里可以先用Where过滤到一些老旧数据或者不要的数据再进行分页应该还是不错的。

    Contains已经到了1s了,这对于用户来说已经不能接受了,但是到了这个级别的数据,应该就用上检索引擎了。这个就不考虑了。

   2.三百万的数据

  EF查询百万级数据的性能测试--单表查询

  EF查询百万级数据的性能测试--单表查询EF查询百万级数据的性能测试--单表查询EF查询百万级数据的性能测试--单表查询

  EF查询百万级数据的性能测试--单表查询EF查询百万级数据的性能测试--单表查询EF查询百万级数据的性能测试--单表查询

  

  总结一下:

 

    Find无压力,还是没啥区别,大概是因为主键索引的缘故。

 

    Any,First能查询到结果时还是挺快了,Count感觉在这里更好用了。

 

    分页到了500ms,还是那句话,这里可以先用Where过滤到一些老旧数据或者不要的数据再进行分页,可以看一下,分页的总记录数都是一,二百万,算了自己想办法优化吧。

 

    Contains不说了。

 

   4.四百万的数据

  EF查询百万级数据的性能测试--单表查询

  EF查询百万级数据的性能测试--单表查询EF查询百万级数据的性能测试--单表查询EF查询百万级数据的性能测试--单表查询

  EF查询百万级数据的性能测试--单表查询EF查询百万级数据的性能测试--单表查询EF查询百万级数据的性能测试--单表查询

  

 总结一下:

    Find无压力,还是没啥区别,大概是因为主键索引的缘故。

    Any,First查不到就慢了,Count感觉在这里更好用了。

    分页不说了。

    Contains不说了。

  七、结语

  当写到这里的时候,我感觉我错了,这些好像和EF没有半毛钱关系,这么简单的查询,EF生成Sql语句应该不耗费什么时间。根本没有发挥出EF的linq语法什么的,各种复杂查询语句,各种连接语句的生成。纳尼!!!

   但是既然都到这个地步了,那就算了,就当做是对Sql Server性能的考验吧。话说应该200w数据的情况下,EF应该还是可以随便这样用的,再说了,我的用的是自己的个人电脑,要是用服务器肯定无压力的。

     感觉EF快不快还是和程序员写的语句有关吧,怎么获取数据,怎么查询,怎么拼接,毕竟到最后都是生成sql语句去查询,所以瓶颈应该在如何快速的生成高效的Sql语句。

    对于一个创业公司,刚开始做的项目,数据连几十万都不到,肯定果断用EF啊,容易上手,开发方便,不用写Sql是最重要的,毕竟微软的东西,都迭代这么多版本了,应该优化的差不多了吧。

   PS:第一次写博客,不知道测试的姿势对不对,方向对不对,有错了大神指出来,请不要喷我,我会哭的[哈哈],我只是一个只会写增删改查的小码农。