欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  移动技术

三维点云学习(2)上- 二叉树实现K-NN Radius-NN Search

程序员文章站 2022-04-09 23:44:46
三维点云学习(1)上二叉数实现K-NN搜寻代码来自 黎老师github个人心得二叉树的搜寻方法正如老师课堂所说,实现二叉树的搜寻有两种方法,一种是递归,一种是循环判断,本质区别并不大#递归搜寻def search_recursively(root,key): #1NN 搜索 ,递归法 if root is None or root.key == key: return root if key < root.key:...

三维点云学习(2)上

二叉树实现K-NN Radius-NN Search

代码来自 黎老师github

个人心得

二叉树的搜寻方法

正如老师课堂所说,实现二叉树的搜寻有两种方法,一种是递归,一种是循环判断,本质区别并不大
三维点云学习(2)上- 二叉树实现K-NN Radius-NN Search

#递归搜寻
def search_recursively(root,key):               #1NN 搜索 ,递归法
    if root is None or root.key == key:
        return root
    if key < root.key:
        return search_recursively(root.left,key)
    elif key > root.key:
        return search_recursively(root.right,key)
    
#循环判断搜寻
def search_iterative(root, key):                #1NN 搜索 ,循环判断
    current_node = root
    while current_node is not None:
        if current_node.key == key:
            return current_node
        elif key < current_node.key:
            current_node = current_node.left
        elif key > current_node.key:
            current_node = current_node.right
    return current_node

二叉树的优势,减少搜寻的复杂度

三维点云学习(2)上- 二叉树实现K-NN Radius-NN Search

实际运行结果

Search in 100 points, takes 7 comparison only #使用二叉树仅仅比较7次
Complexity is around O(log2(n)), n is number of
database points, if tree is balanced #假设二叉树是平衡的,复杂度为log2(n),n为二叉树的深度
Worst O(N) #最坏结果,比较100次

kNN Search:
index - distance
24 - 0.00
85 - 1.00
42 - 1.00
12 - 2.00
86 - 2.00
In total 8 comparison operations.
Radius NN Search:
index - distance
24 - 0.00
85 - 1.00
42 - 1.00
12 - 2.00
86 - 2.00
In total 5 neighbors within 2.000000.
There are 8 comparison operations.

二叉树的三种应用

三维点云学习(2)上- 二叉树实现K-NN Radius-NN Search

#二叉树的三种应用
def inorder(root):
    # Inorder (Left, Root, Right)
    if root is not None:
        inorder(root.left)
        print(root)
        inorder(root.right)


def preorder(root):
    # Preorder (Root, Left, Right)
    if root is not None:
        print(root)
        preorder(root.left)
        preorder(root.right)


def postorder(root):
    # Postorder (Left, Right, Root)
    if root is not None:
        postorder(root.left)
        postorder(root.right)
        print(root)

1NN搜寻过程
三维点云学习(2)上- 二叉树实现K-NN Radius-NN Search

KNN search

worst Distance for KNN

三维点云学习(2)上- 二叉树实现K-NN Radius-NN Search
具体思路:
1.先创建一个能容纳需要的临近点结果的list
2.将暂时的KNN result 进行sorted
3.最大worst_dist 的点在KNN result list的最后(随时被替代)
4.根据worst_list的不断更新,动态修改KNN result里的结果

Radius NN search

方法思路和KNN算法差不多,区别在于
Worst distance is fixed.(Radius NN search预先设定检测radius,在radius里进行点的筛选)

KNN search VS Radius NN search
三维点云学习(2)上- 二叉树实现K-NN Radius-NN Search

完整代码

bst.py

import random
import math
import  numpy as np

from result_set import  KNNResultSet,RadiusNNResultSet

class Node:                          #节点,每一个数都是一个分支节点
    def __init__(self,key,value=-1):
        self.left = None
        self.right = None
        self.key =key
        self.value = value      #value可以用作储存其他数值,譬如点原来的序号

    def __str__(self):
        return "key: %s, value: %s" % (str(self.key), str(self.value))

def insert(root,key,value=-1):    #构建二叉树
    if root is None:
        root = Node(key,value)      #赋初值
    else:
        if key < root.key:
            root.left = insert(root.left,key,value)   #小数放左边
        elif key > root.key:
            root.right = insert(root.right,key,value)  #大数放右边
        else:   # don't insert if key already exist in the tree
            pass
    return  root

#二叉树的三种应用
def inorder(root):
    # Inorder (Left, Root, Right)
    if root is not None:
        inorder(root.left)
        print(root)
        inorder(root.right)


def preorder(root):
    # Preorder (Root, Left, Right)
    if root is not None:
        print(root)
        preorder(root.left)
        preorder(root.right)


def postorder(root):
    # Postorder (Left, Right, Root)
    if root is not None:
        postorder(root.left)
        postorder(root.right)
        print(root)

def knn_search(root:Node,result_set:KNNResultSet,key):
    if root is None:
        return False

    # compare the root itself
    result_set.add_point(math.fabs(root.key - key),root.value)       #计算worst_dist ,并把当前root.value(index二叉树)里的值加入到resut_set 中
    if result_set.worstDist() == 0:
        return True

    if root.key >= key:
        # iterate left branch first
        if knn_search(root.left, result_set, key):
            return True
        elif math.fabs(root.key-key) < result_set.worstDist():
            return knn_search(root.right, result_set, key)
        return False
    else:
        # iterate right branch first
        if knn_search(root.right, result_set, key):
            return True
        elif math.fabs(root.key-key) < result_set.worstDist():
            return knn_search(root.left, result_set, key)
        return False

def radius_search(root: Node, result_set: RadiusNNResultSet, key):
    if root is None:
        return False

    # compare the root itself
    result_set.add_point(math.fabs(root.key - key), root.value)

    if root.key >= key:
        # iterate left branch first
        if radius_search(root.left, result_set, key):
            return True
        elif math.fabs(root.key-key) < result_set.worstDist():
            return radius_search(root.right, result_set, key)
        return False
    else:
        # iterate right branch first
        if radius_search(root.right, result_set, key):
            return True
        elif math.fabs(root.key-key) < result_set.worstDist():
            return radius_search(root.left, result_set, key)
        return False





def search_recursively(root,key):               #1NN 搜索 ,递归法
    if root is None or root.key == key:
        return root
    if key < root.key:
        return search_recursively(root.left,key)
    elif key > root.key:
        return search_recursively(root.right,key)

def search_iterative(root, key):                #1NN 搜索 ,循环判断
    current_node = root
    while current_node is not None:
        if current_node.key == key:
            return current_node
        elif key < current_node.key:
            current_node = current_node.left
        elif key > current_node.key:
            current_node = current_node.right
    return current_node



def main():
    # Data generation
    db_size = 100
    k = 5    #搜寻5个点
    radius = 2.0
    data = np.random.permutation(db_size).tolist()   #random.permutation 随机排列一个数组

    root =None
    for i,point in enumerate(data):
        root = insert(root,point,i)

    query_key = 6
    result_set = KNNResultSet(capacity=k)
    knn_search(root, result_set, query_key)
    print('kNN Search:')
    print('index - distance')
    print(result_set)

    result_set = RadiusNNResultSet(radius=radius)
    radius_search(root, result_set, query_key)
    print('Radius NN Search:')
    print('index - distance')
    print(result_set)

    # print("inorder")
    # inorder(root)
    # print("preorder")
    # preorder(root)
    # print("postorder")
    # postorder(root)

    # node = search_recursive(root, 2)
    # print(node)
    #
    # node = search_iterative(root, 2)
    # print(node)

if __name__ == '__main__':
    main()

result_set.py (KNN Radius NN search config fcn)

import copy


class DistIndex:
    def __init__(self, distance, index):
        self.distance = distance
        self.index = index

    def __lt__(self, other):
        return self.distance < other.distance


class KNNResultSet:
    def __init__(self, capacity):
        self.capacity = capacity
        self.count = 0
        self.worst_dist = 1e10
        self.dist_index_list = []
        for i in range(capacity):
            self.dist_index_list.append(DistIndex(self.worst_dist, 0))

        self.comparison_counter = 0

    def size(self):
        return self.count

    def full(self):
        return self.count == self.capacity

    def worstDist(self):
        return self.worst_dist

    def add_point(self, dist, index):
        self.comparison_counter += 1
        if dist > self.worst_dist:
            return

        if self.count < self.capacity:
            self.count += 1

        i = self.count - 1
        while i > 0:
            if self.dist_index_list[i - 1].distance > dist:
                self.dist_index_list[i] = copy.deepcopy(self.dist_index_list[i - 1])
                i -= 1
            else:
                break

        self.dist_index_list[i].distance = dist
        self.dist_index_list[i].index = index
        self.worst_dist = self.dist_index_list[self.capacity - 1].distance

    def __str__(self):
        output = ''
        for i, dist_index in enumerate(self.dist_index_list):
            output += '%d - %.2f\n' % (dist_index.index, dist_index.distance)
        output += 'In total %d comparison operations.' % self.comparison_counter
        return output


class RadiusNNResultSet:
    def __init__(self, radius):
        self.radius = radius
        self.count = 0
        self.worst_dist = radius
        self.dist_index_list = []

        self.comparison_counter = 0

    def size(self):
        return self.count

    def worstDist(self):
        return self.radius

    def add_point(self, dist, index):
        self.comparison_counter += 1
        if dist > self.radius:
            return

        self.count += 1
        self.dist_index_list.append(DistIndex(dist, index))

    def __str__(self):
        self.dist_index_list.sort()
        output = ''
        for i, dist_index in enumerate(self.dist_index_list):
            output += '%d - %.2f\n' % (dist_index.index, dist_index.distance)
        output += 'In total %d neighbors within %f.\nThere are %d comparison operations.' \
                  % (self.count, self.radius, self.comparison_counter)
        return output

本文地址:https://blog.csdn.net/weixin_41281151/article/details/107190715