欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Kafka生产者(producer)生产topic数据常见API

程序员文章站 2022-03-04 13:51:15
...

一.将本地数据用java语言(API)导入到topic

1.本次主要是把文本文件所有数据导入到topic中

废话不多说,直接上代码。
代码说明:将本地文件所有内容逐行地 通过API 打入kafka 的 topic 中

import java.io.BufferedReader;
import java.io.FileReader;
import java.util.Properties;
import org.apache.kafka.clients.producer.Callback;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;

public class Producer3 {
    public static void main(String[] args) throws Exception {
        Properties props = new Properties();
        props.put("bootstrap.servers", "192.168.16.100:9092");
        props.put("ack","1");
        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        Producer<String, String> producer = new KafkaProducer<String, String>(props);
        //获得文件路径
        String filePath1="D:\\AWork\\4_Spark\\Project\\GZKY\\src\\file\\WordsList.txt";
        //创建buffer
        BufferedReader br = new BufferedReader(new FileReader(filePath1));
        String line ;
        while((line = br.readLine()) != null) {
            //将文本每条数据转换成 ProducerRecord
            final ProducerRecord<String, String> record = new ProducerRecord<String, String>("gong_test", line+",ll");
            //将数据发个topic
            producer.send(record, new Callback() {
                public void onCompletion(RecordMetadata metadata, Exception e) {
                    // 如果发送消息成功,返回了 RecordMetadata
                    if(metadata != null) {
                        StringBuilder sb = new StringBuilder();
                        sb.append("message has been sent successfully! ")
                                .append("send to partition ").append(metadata.partition())
                                .append(", offset = ").append(metadata.offset());
                        System.out.println(sb.toString());
                        //System.out.println(record.toString());
                    }
                    // 如果消息发送失败,抛出异常
                    if(e != null) {
                        e.printStackTrace();
                    }
                }
            });
            //每隔500ms产生以此数据
            Thread.sleep(500);
        }
        producer.close();
    }
}

2.本地文件通过API 以Json格式 打入kafka 的 topic 中
此时可以通过json的形式,选择性地拿取本地文件数据到topic
代码如下;

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.Properties;
import org.json.JSONException;
import org.json.JSONObject;
import org.apache.kafka.clients.producer.Callback;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;

/*
此版本是java版本
将本地文件 通过API 以Json格式 打入kafka  的  topic 中
 */
public class Producer4 {
    public static void main(String[] args) throws IOException, JSONException, InterruptedException {
        Properties props = new Properties();
        props.put("bootstrap.servers", "192.168.16.100:9092");
        props.put("ack","1");
        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        Producer<String, String> producer = new KafkaProducer<String, String>(props);
        //获得文件路径
        String filePath1="D:\\AWork\\4_Spark\\Project\\GZKY\\src\\file\\WordsList.txt";

        //
        BufferedReader bf=new BufferedReader(new FileReader(filePath1));
        String line;
        while ((line=bf.readLine())!=null){
            JSONObject jo=new JSONObject();
            String[] lines=line.split(",");
            jo.put("1",lines[0]);
            jo.put("2",lines[1]);
            jo.put("3",lines[2]);
            jo.put("4",lines[3]);
            ProducerRecord<String,String> record=new ProducerRecord<String,String> ("gong_test",jo.toString());
            producer.send(record, new Callback() {
                public void onCompletion(RecordMetadata recordMetadata, Exception e) {
                    if(recordMetadata!=null){
                        StringBuffer sb=new StringBuffer();
                        sb.append("success  ").append("partition:").append(recordMetadata.partition())
                                .append(" offset:").append(recordMetadata.offset());
                        System.out.println(sb.toString());
                    }

                    if(e!=null){
                        e.printStackTrace();
                    }
                }
            });
            Thread.sleep(500);
        }
        producer.close();
    }

}

二.Scala版本将本地文件以JSON格式打到Kafka中

直接上代码:


import java.util.Properties
import kafka.producer.{KeyedMessage, Producer, ProducerConfig}
import org.apache.spark.sql.SparkSession
import org.json.JSONObject
/*
此版本是spark版本
把本地文本数据数据导入到Kafka的topic中  此方法可以挑选文本中有用的字段->json格式
*/
object ProducerJson {
  def main(args: Array[String]): Unit = {
    //往topic中写数据
    val topic = "gong_test"
    //指定broker的ip和端口号
    val brokers="192.168.16.100:9092"
    //建配置文件
    val props=new Properties()
    props.put("metadata.broker.list",brokers)
    //指定Kafka的编译器 放入
    props.put("serializer.class","kafka.serializer.StringEncoder")
    //配置kafka的config
    //val kafkaconfig=new ProducerConfig(props)、
    val kafkaconfig=new ProducerConfig(props)
    val producer= new Producer[String,String](kafkaconfig)

    //配置SPark的congfig
    val ss = SparkSession.builder().appName("LocalToKafka").master("local[2]").getOrCreate()
    val sc =ss.sparkContext

    //定义path
    val filePath="D:\\AWork\\gzky\\WordsList.txt"
    val records=sc.textFile(filePath).map(_.split(",")).collect()

    //把数据预处理变成json
    for (record<-records){
      val event = new JSONObject() // import org.json.JSONObject
      event
        .put("camera_id", record(0))
        .put("car_id", record(1))
        .put("event_time", record(2))
        .put("speed", record(3))
        .put("road_id", record(4))
      // 生产event 消息
      producer.send(new KeyedMessage[String,String](topic,event.toString()))
      println(""+event)
      Thread.sleep(200)
    }
     sc.stop()
  }
}

三.直接在shell中使用kafka的producer

目的将本地文件一次性打入到topic中

./kafka-console-producer.sh --broker-list 192.168.16.100:9092 --topic gonst </root/WordsList.txt

总结:
当然kafka的topic数据来源有很多,比如:从一个端口直接生产数据,或者从flume端接收数据等,上面只是写了从本地数据到topic。

相关标签: kafka