Kafka生产者(producer)生产topic数据常见API
程序员文章站
2022-03-04 13:51:15
...
一.将本地数据用java语言(API)导入到topic
1.本次主要是把文本文件所有数据导入到topic中
废话不多说,直接上代码。
代码说明:将本地文件所有内容逐行地 通过API 打入kafka 的 topic 中
import java.io.BufferedReader;
import java.io.FileReader;
import java.util.Properties;
import org.apache.kafka.clients.producer.Callback;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
public class Producer3 {
public static void main(String[] args) throws Exception {
Properties props = new Properties();
props.put("bootstrap.servers", "192.168.16.100:9092");
props.put("ack","1");
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
Producer<String, String> producer = new KafkaProducer<String, String>(props);
//获得文件路径
String filePath1="D:\\AWork\\4_Spark\\Project\\GZKY\\src\\file\\WordsList.txt";
//创建buffer
BufferedReader br = new BufferedReader(new FileReader(filePath1));
String line ;
while((line = br.readLine()) != null) {
//将文本每条数据转换成 ProducerRecord
final ProducerRecord<String, String> record = new ProducerRecord<String, String>("gong_test", line+",ll");
//将数据发个topic
producer.send(record, new Callback() {
public void onCompletion(RecordMetadata metadata, Exception e) {
// 如果发送消息成功,返回了 RecordMetadata
if(metadata != null) {
StringBuilder sb = new StringBuilder();
sb.append("message has been sent successfully! ")
.append("send to partition ").append(metadata.partition())
.append(", offset = ").append(metadata.offset());
System.out.println(sb.toString());
//System.out.println(record.toString());
}
// 如果消息发送失败,抛出异常
if(e != null) {
e.printStackTrace();
}
}
});
//每隔500ms产生以此数据
Thread.sleep(500);
}
producer.close();
}
}
2.本地文件通过API 以Json格式 打入kafka 的 topic 中
此时可以通过json的形式,选择性地拿取本地文件数据到topic
代码如下;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.Properties;
import org.json.JSONException;
import org.json.JSONObject;
import org.apache.kafka.clients.producer.Callback;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
/*
此版本是java版本
将本地文件 通过API 以Json格式 打入kafka 的 topic 中
*/
public class Producer4 {
public static void main(String[] args) throws IOException, JSONException, InterruptedException {
Properties props = new Properties();
props.put("bootstrap.servers", "192.168.16.100:9092");
props.put("ack","1");
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
Producer<String, String> producer = new KafkaProducer<String, String>(props);
//获得文件路径
String filePath1="D:\\AWork\\4_Spark\\Project\\GZKY\\src\\file\\WordsList.txt";
//
BufferedReader bf=new BufferedReader(new FileReader(filePath1));
String line;
while ((line=bf.readLine())!=null){
JSONObject jo=new JSONObject();
String[] lines=line.split(",");
jo.put("1",lines[0]);
jo.put("2",lines[1]);
jo.put("3",lines[2]);
jo.put("4",lines[3]);
ProducerRecord<String,String> record=new ProducerRecord<String,String> ("gong_test",jo.toString());
producer.send(record, new Callback() {
public void onCompletion(RecordMetadata recordMetadata, Exception e) {
if(recordMetadata!=null){
StringBuffer sb=new StringBuffer();
sb.append("success ").append("partition:").append(recordMetadata.partition())
.append(" offset:").append(recordMetadata.offset());
System.out.println(sb.toString());
}
if(e!=null){
e.printStackTrace();
}
}
});
Thread.sleep(500);
}
producer.close();
}
}
二.Scala版本将本地文件以JSON格式打到Kafka中
直接上代码:
import java.util.Properties
import kafka.producer.{KeyedMessage, Producer, ProducerConfig}
import org.apache.spark.sql.SparkSession
import org.json.JSONObject
/*
此版本是spark版本
把本地文本数据数据导入到Kafka的topic中 此方法可以挑选文本中有用的字段->json格式
*/
object ProducerJson {
def main(args: Array[String]): Unit = {
//往topic中写数据
val topic = "gong_test"
//指定broker的ip和端口号
val brokers="192.168.16.100:9092"
//建配置文件
val props=new Properties()
props.put("metadata.broker.list",brokers)
//指定Kafka的编译器 放入
props.put("serializer.class","kafka.serializer.StringEncoder")
//配置kafka的config
//val kafkaconfig=new ProducerConfig(props)、
val kafkaconfig=new ProducerConfig(props)
val producer= new Producer[String,String](kafkaconfig)
//配置SPark的congfig
val ss = SparkSession.builder().appName("LocalToKafka").master("local[2]").getOrCreate()
val sc =ss.sparkContext
//定义path
val filePath="D:\\AWork\\gzky\\WordsList.txt"
val records=sc.textFile(filePath).map(_.split(",")).collect()
//把数据预处理变成json
for (record<-records){
val event = new JSONObject() // import org.json.JSONObject
event
.put("camera_id", record(0))
.put("car_id", record(1))
.put("event_time", record(2))
.put("speed", record(3))
.put("road_id", record(4))
// 生产event 消息
producer.send(new KeyedMessage[String,String](topic,event.toString()))
println(""+event)
Thread.sleep(200)
}
sc.stop()
}
}
三.直接在shell中使用kafka的producer
目的将本地文件一次性打入到topic中
./kafka-console-producer.sh --broker-list 192.168.16.100:9092 --topic gonst </root/WordsList.txt
总结:
当然kafka的topic数据来源有很多,比如:从一个端口直接生产数据,或者从flume端接收数据等,上面只是写了从本地数据到topic。
下一篇: echarts入门