ES6 javascript中Class类继承用法实例详解
本文实例讲述了es6 javascript中class类继承用法。分享给大家供大家参考,具体如下:
1. 基本用法
class 之间可以通过extends关键字实现继承, 这比 es5 的通过修改原型链实现继承, 要清晰和方便很多。
class colorpoint extends point {}
上面代码定义了一个colorpoint类, 该类通过extends关键字, 继承了point类的所有属性和方法。 但是由于没有部署任何代码, 所以这两个类完全一样, 等于复制了一个point类。 下面, 我们在colorpoint内部加上代码。
class colorpoint extends point { constructor(x, y, color) { super(x, y); // 调用父类的 constructor(x, y) this.color = color; } tostring() { return this.color + ' ' + super.tostring(); // 调用父类的 tostring() } }
上面代码中, constructor方法和tostring方法之中, 都出现了super关键字, 它在这里表示父类的构造函数, 用来新建父类的this对象。
子类必须在constructor方法中调用super方法, 否则新建实例时会报错。 这是因为子类没有自己的this对象, 而是继承父类的this对象, 然后对其进行加工。 如果不调用super方法, 子类就得不到this对象。
class point { /* ... */ } class colorpoint extends point { constructor() {} } let cp = new colorpoint(); // referenceerror
上面代码中, colorpoint继承了父类point, 但是它的构造函数没有调用super方法, 导致新建实例时报错。
es5 的继承, 实质是先创造子类的实例对象this, 然后再将父类的方法添加到this上面( parent.apply(this))。 es6 的继承机制完全不同, 实质是先创造父类的实例对象this( 所以必须先调用super方法), 然后再用子类的构造函数修改this。
如果子类没有定义constructor方法, 这个方法会被默认添加, 代码如下。 也就是说, 不管有没有显式定义, 任何一个子类都有constructor方法。
constructor(...args) { super(...args); }
另一个需要注意的地方是, 在子类的构造函数中, 只有调用super之后, 才可以使用this关键字, 否则会报错。 这是因为子类实例的构建, 是基于对父类实例加工, 只有super方法才能返回父类实例。
class point { constructor(x, y) { this.x = x; this.y = y; } } class colorpoint extends point { constructor(x, y, color) { this.color = color; // referenceerror super(x, y); this.color = color; // 正确 } }
上面代码中, 子类的constructor方法没有调用super之前, 就使用this关键字, 结果报错, 而放在super方法之后就是正确的。
下面是生成子类实例的代码。
let cp = new colorpoint(25, 8, 'green'); cp instanceof colorpoint // true cp instanceof point // true
上面代码中, 实例对象cp同时是colorpoint和point两个类的实例, 这与 es5 的行为完全一致。
2. 类的 prototype 属性和 __proto__ 属性
大多数浏览器的 es5 实现之中, 每一个对象都有__proto__属性, 指向对应的构造函数的 prototype 属性。 class 作为构造函数的语法糖, 同时有prototype 属性和__proto__属性, 因此同时存在两条继承链。
( 1) 子类的__proto__属性, 表示构造函数的继承, 总是指向父类。
( 2) 子类prototype属性的__proto__属性, 表示方法的继承, 总是指向父类的prototype属性。
class a {} class b extends a {} b.__proto__ === a // true b.prototype.__proto__ === a.prototype // true
上面代码中, 子类b的__proto__属性指向父类a, 子类b的prototype属性的__proto__属性指向父类a的prototype属性。
这样的结果是因为, 类的继承是按照下面的模式实现的。
class a {} class b {} // b 的实例继承 a 的实例 object.setprototypeof(b.prototype, a.prototype); // b 继承 a 的静态属性 object.setprototypeof(b, a);
《》 一章给出过object.setprototypeof
方法的实现。
object.setprototypeof = function(obj, proto) { obj.__proto__ = proto; return obj; }
因此, 就得到了上面的结果。
object.setprototypeof(b.prototype, a.prototype); // 等同于 b.prototype.__proto__ = a.prototype; object.setprototypeof(b, a); // 等同于 b.__proto__ = a;
这两条继承链, 可以这样理解: 作为一个对象, 子类( b) 的原型( __proto__属性) 是父类( a); 作为一个构造函数, 子类( b) 的原型( prototype属性) 是父类的实例。
object.create(a.prototype); // 等同于 b.prototype.__proto__ = a.prototype;
3. extends 的继承目标
extends关键字后面可以跟多种类型的值。
class b extends a {}
上面代码的a, 只要是一个有prototype属性的函数, 就能被b继承。 由于函数都有prototype属性( 除了function.prototype
函数), 因此a可以是任意函数。
下面, 讨论三种特殊情况。
第一种特殊情况, 子类继承 object 类。
class a extends object {} a.__proto__ === object // true a.prototype.__proto__ === object.prototype // true
这种情况下, a其实就是构造函数object的复制, a的实例就是object的实例。
第二种特殊情况, 不存在任何继承。
class a {} a.__proto__ === function.prototype // true a.prototype.__proto__ === object.prototype // true
这种情况下, a 作为一个基类( 即不存在任何继承), 就是一个普通函数, 所以直接继承funciton.prototype
。 但是, a调用后返回一个空对象( 即object实例), 所以a.prototype.__proto__指向构造函数( object) 的prototype属性。
第三种特殊情况, 子类继承null。
class a extends null {} a.__proto__ === function.prototype // true a.prototype.__proto__ === undefined // true
这种情况与第二种情况非常像。 a也是一个普通函数, 所以直接继承funciton.prototype。 但是, a 调用后返回的对象不继承任何方法, 所以它的__proto__指向function.prototype, 即实质上执行了下面的代码。
class c extends null { constructor() { return object.create(null); } }
4. object.getprototypeof()
object.getprototypeof
方法可以用来从子类上获取父类。
object.getprototypeof(colorpoint) === point // true
因此, 可以使用这个方法判断, 一个类是否继承了另一个类。
5. super 关键字
super这个关键字, 有两种用法, 含义不同。
( 1) 作为函数调用时( 即super(...args)
), super代表父类的构造函数。
( 2) 作为对象调用时( 即super.prop
或super.method()
), super代表父类。 注意, 此时super即可以引用父类实例的属性和方法, 也可以引用父类的静态方法。
class b extends a { get m() { return this._p * super._p; } set m() { throw new error(' 该属性只读 '); } }
上面代码中, 子类通过super关键字, 调用父类实例的_p属性。
由于, 对象总是继承其他对象的, 所以可以在任意一个对象中, 使用super关键字。
var obj = { tostring() { return "myobject: " + super.tostring(); } }; obj.tostring(); // myobject: [object object]
6. 实例的 __proto__ 属性
子类实例的 __proto__ 属性的 __proto__ 属性, 指向父类实例的 __proto__ 属性。 也就是说, 子类的原型的原型, 是父类的原型。
var p1 = new point(2, 3); var p2 = new colorpoint(2, 3, 'red'); p2.__proto__ === p1.__proto__ // false p2.__proto__.__proto__ === p1.__proto__ // true
上面代码中, colorpoint继承了point, 导致前者原型的原型是后者的原型。
因此, 通过子类实例的__proto__.__proto__属性, 可以修改父类实例的行为。
p2.__proto__.__proto__.printname = function() { console.log('ha'); }; p1.printname() // "ha"
上面代码在colorpoint的实例p2上向point类添加方法, 结果影响到了point的实例p1。
原生构造函数的继承
原生构造函数是指语言内置的构造函数, 通常用来生成数据结构。 ecmascript 的原生构造函数大致有下面这些。
boolean() number() string() array() date() function() regexp() error() object()
以前, 这些原生构造函数是无法继承的, 比如, 不能自己定义一个array的子类。
function myarray() { array.apply(this, arguments); } myarray.prototype = object.create(array.prototype, { constructor: { value: myarray, writable: true, configurable: true, enumerable: true } });
上面代码定义了一个继承 array 的myarray类。 但是, 这个类的行为与array完全不一致。
var colors = new myarray(); colors[0] = "red"; colors.length // 0 colors.length = 0; colors[0] // "red"
之所以会发生这种情况, 是因为子类无法获得原生构造函数的内部属性, 通过array.apply() 或者分配给原型对象都不行。 原生构造函数会忽略apply方法传入的this, 也就是说, 原生构造函数的this无法绑定, 导致拿不到内部属性。
es5 是先新建子类的实例对象this, 再将父类的属性添加到子类上, 由于父类的内部属性无法获取, 导致无法继承原生的构造函数。 比如, array 构造函数有一个内部属性[[defineownproperty]], 用来定义新属性时, 更新length属性, 这个内部属性无法在子类获取, 导致子类的length属性行为不正常。
下面的例子中, 我们想让一个普通对象继承error对象。
var e = {}; object.getownpropertynames(error.call(e)) // [ 'stack' ] object.getownpropertynames(e) // []
上面代码中, 我们想通过error.call(e)
这种写法, 让普通对象e具有error对象的实例属性。 但是, error.call() 完全忽略传入的第一个参数, 而是返回一个新对象, e本身没有任何变化。 这证明了error.call(e) 这种写法, 无法继承原生构造函数。
es6 允许继承原生构造函数定义子类, 因为 es6 是先新建父类的实例对象this, 然后再用子类的构造函数修饰this, 使得父类的所有行为都可以继承。 下面是一个继承array的例子。
class myarray extends array { constructor(...args) { super(...args); } } var arr = new myarray(); arr[0] = 12; arr.length // 1 arr.length = 0; arr[0] // undefined
上面代码定义了一个myarray类, 继承了array构造函数, 因此就可以从myarray生成数组的实例。 这意味着, es6 可以自定义原生数据结构( 比如array、 string 等) 的子类, 这是 es5 无法做到的。
上面这个例子也说明, extends关键字不仅可以用来继承类, 还可以用来继承原生的构造函数。 因此可以在原生数据结构的基础上, 定义自己的数据结构。 下面就是定义了一个带版本功能的数组。
class versionedarray extends array { constructor() { super(); this.history = [ [] ]; } commit() { this.history.push(this.slice()); } revert() { this.splice(0, this.length, ...this.history[this.history.length - 1]); } } var x = new versionedarray(); x.push(1); x.push(2); x // [1, 2] x.history // [[]] x.commit(); x.history // [[], [1, 2]] x.push(3); x // [1, 2, 3] x.revert(); x // [1, 2]
上面代码中, versionedarray结构会通过commit方法, 将自己的当前状态存入history属性, 然后通过revert方法, 可以撤销当前版本, 回到上一个版本。 除此之外, versionedarray依然是一个数组, 所有原生的数组方法都可以在它上面调用。
下面是一个自定义error子类的例子。
class extendableerror extends error { constructor(message) { super(); this.message = message; this.stack = (new error()).stack; this.name = this.constructor.name; } } class myerror extends extendableerror { constructor(m) { super(m); } } var myerror = new myerror('ll'); myerror.message // "ll" myerror instanceof error // true myerror.name // "myerror" myerror.stack // error // at myerror.extendableerror // ...
注意, 继承object的子类, 有一个行为差异。
class newobj extends object { constructor() { super(...arguments); } } var o = new newobj({ attr: true }); console.log(o.attr === true); // false
上面代码中, newobj继承了object, 但是无法通过super方法向父类object传参。 这是因为 es6 改变了object构造函数的行为, 一旦发现object方法不是通过new object() 这种形式调用, es6 规定object构造函数会忽略参数。
更多相关内容可查看本站专题:《ecmascript6(es6)入门教程》、《javascript数组操作技巧总结》、《javascript字符与字符串操作技巧总结》、《javascript数据结构与算法技巧总结》、《javascript错误与调试技巧总结》及《javascript面向对象入门教程》
希望本文所述对大家基于ecmascript的程序设计有所帮助。