洛谷P2792 [JSOI2008]小店购物(最小树形图)
程序员文章站
2022-04-09 19:08:15
题意 "题目链接" Sol 一开始的思路:新建一个虚点向每个点连边,再加上题面中给出的边,边权均为大小 需要购买的数量 然后发现死活都过不去 看了题解才发现题目中有个细节——买了$A$就可以买$B$,但是人家没告诉你必须买够$A$的数量才能买$B$呀qwqqqqqqq 所以建图的时候只算一次贡献就行 ......
题意
sol
一开始的思路:新建一个虚点向每个点连边,再加上题面中给出的边,边权均为大小*需要购买的数量
然后发现死活都过不去
看了题解才发现题目中有个细节——买了\(a\)就可以买\(b\),但是人家没告诉你必须买够\(a\)的数量才能买\(b\)呀qwqqqqqqq
所以建图的时候只算一次贡献就行了
这样剩下的个数都可以通过最小值买到
// luogu-judger-enable-o2 #include<bits/stdc++.h> using namespace std; const int maxn = 1e5 + 10, inf = 1e9 + 10; inline int read() { char c = getchar(); int x = 0, f = 1; while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();} while(c >= '0' && c <= '9') x = x * 10 + c -'0', c = getchar(); return x * f; } int n, m, r, m[maxn], id[maxn], vis[maxn], fa[maxn]; double mn[maxn], val[maxn]; struct edge { int u, v; double w; int nxt; }e[maxn]; int head[maxn], num = 1; inline void addedge(int x, int y, double w) { e[num] = (edge) {x, y, w, head[x]}; head[x] = num++; } double zhuliu() { double ans = 0; r = n; while("liang liang") { for(int i = 1; i <= n; i++) id[i] = vis[i] = 0, mn[i] = 1e9; int cnt = 0, x; for(int i = 1; i <= num; i++) if(e[i].v != e[i].u && (mn[e[i].v] > e[i].w)) mn[e[i].v] = e[i].w, fa[e[i].v] = e[i].u; mn[r] = 0; for(int i = 1; i <= n; i++) { ans += mn[i]; for(x = i; (!id[x]) && (vis[x] != i) && x != r; x = fa[x]) vis[x] = i; //tag if(x != r && (!id[x])) { id[x] = ++cnt; for(int t = fa[x]; t != x; t = fa[t]) id[t] = cnt; } } if(cnt == 0) return ans; for(int i = 1; i <= n; i++) if(!id[i]) id[i] = ++cnt; for(int i = 1; i <= num; i++) { double pre = mn[e[i].v]; if((e[i].u = id[e[i].u]) != (e[i].v = id[e[i].v])) e[i].w -= pre; } n = cnt; r = id[r]; } return ans; } int main() { n = read(); for(int i = 1; i <= n; i++) { scanf("%lf", &val[i]), m[i] = read(), addedge(n + 1, i, val[i]); } n++; m = read(); for(int i = 1; i <= m; i++) { int x = read(), y = read(); double z; scanf("%lf", &z); addedge(x, y, z); val[y] = min(val[y], z); } double ans = 0; for(int i = 1; i <= n - 1; i++) ans += 1.0 * (m[i] - 1) * val[i];// printf("%d\n", m[i] - 1); printf("%.2lf", ans + zhuliu()); return 0; }
下一篇: 行为模式之迭代器模式