来讨论一下这些常见的 Redis 面试题
redis应该算面试中必问的一个知识点,但是发现很多童鞋并不熟悉这块,这篇就常见的一些问题做一些整理,有不对的地方欢迎留言指正!
1.redis支持的数据类型?
string(字符串)
格式: set key value
string类型是二进制安全的。意思是redis的string可以包含任何数据。比如jpg图片或者序列化的对象 。
string类型是redis最基本的数据类型,一个键最大能存储512mb。
hash(哈希)
格式: hmset name key1 value1 key2 value2
redis hash 是一个键值(key=>value)对集合。
redis hash是一个string类型的field和value的映射表,hash特别适合用于存储对象。
list(列表)
redis 列表是简单的字符串列表,按照插入顺序排序。你可以添加一个元素到列表的头部(左边)或者尾部(右边)
格式: lpush name value
在 key 对应 list 的头部添加字符串元素
格式: rpush name value
在 key 对应 list 的尾部添加字符串元素
格式: lrem name index
key 对应 list 中删除 count 个和 value 相同的元素
格式: llen name
返回 key 对应 list 的长度
set(集合)
格式: sadd name value
redis的set是string类型的无序集合。
集合是通过哈希表实现的,所以添加,删除,查找的复杂度都是o(1)。
zset(sorted set:有序集合)
格式: zadd name score value
redis zset 和 set 一样也是string类型元素的集合,且不允许重复的成员。
不同的是每个元素都会关联一个double类型的分数。redis正是通过分数来为集合中的成员进行从小到大的排序。
zset的成员是唯一的,但分数(score)却可以重复。
2.什么是redis持久化?redis有哪几种持久化方式?优缺点是什么?
持久化就是把内存的数据写到磁盘中去,防止服务宕机了内存数据丢失。
redis 提供了两种持久化方式:rdb(默认) 和aof
rdb:
rdb是redis database缩写
功能核心函数rdbsave(生成rdb文件)和rdbload(从文件加载内存)两个函数
aof:
aof是append-only file缩写
每当执行服务器(定时)任务或者函数时flushappendonlyfile 函数都会被调用, 这个函数执行以下两个工作
aof写入保存:
- write:根据条件,将 aof_buf 中的缓存写入到 aof 文件
- save:根据条件,调用 fsync 或 fdatasync 函数,将 aof 文件保存到磁盘中。
存储结构:
内容是redis通讯协议(resp )格式的命令文本存储。
比较:
- aof文件比rdb更新频率高,优先使用aof还原数据。
- aof比rdb更安全也更大
- rdb性能比aof好
- 如果两个都配了优先加载aof
刚刚上面你有提到redis通讯协议(resp ),能解释下什么是resp?有什么特点?(可以看到很多面试其实都是连环炮,面试官其实在等着你回答到这个点,如果你答上了对你的评价就又加了一分)
resp 是redis客户端和服务端之前使用的一种通讯协议;
resp 的特点:实现简单、快速解析、可读性好
for simple strings the first byte of the reply is "+" 回复
for errors the first byte of the reply is "-" 错误
for integers the first byte of the reply is ":" 整数
for bulk strings the first byte of the reply is "$" 字符串
for arrays the first byte of the reply is "*" 数组
持久化在面试中问到的频率较高,重点学一下,篇幅有限,具体点下面的文章:
10分钟彻底理解redis的持久化机制:rdb和aof
3.redis 有哪些架构模式?讲讲各自的特点
单机版
特点:
简单
问题:
- 内存容量有限
- 处理能力有限
- 无法高可用。
主从复制
redis 的复制(replication)功能允许用户根据一个 redis 服务器来创建任意多个该服务器的复制品,其中被复制的服务器为主服务器(master),而通过复制创建出来的服务器复制品则为从服务器(slave)。
只要主从服务器之间的网络连接正常,主从服务器两者会具有相同的数据,主服务器就会一直将发生在自己身上的数据更新同步 给从服务器,从而一直保证主从服务器的数据相同。
特点:
- master/slave 角色
- master/slave 数据相同
- 降低 master 读压力在转交从库
问题:
- 无法保证高可用
- 没有解决 master 写的压力
哨兵
redis sentinel 是一个分布式系统中监控 redis 主从服务器,并在主服务器下线时自动进行故障转移。其中三个特性:
- 监控(monitoring):sentinel 会不断地检查你的主服务器和从服务器是否运作正常。
- 提醒(notification):当被监控的某个 redis 服务器出现问题时, sentinel 可以通过 api 向管理员或者其他应用程序发送通知。
- 自动故障迁移(automatic failover):当一个主服务器不能正常工作时, sentinel 会开始一次自动故障迁移操作。
特点:
- 保证高可用
- 监控各个节点
- 自动故障迁移
缺点:
- 主从模式,切换需要时间丢数据
- 没有解决 master 写的压力
集群(proxy 型)
twemproxy 是一个 twitter 开源的一个 redis 和 memcache 快速/轻量级代理服务器;twemproxy 是一个快速的单线程代理程序,支持 memcached ascii 协议和 redis 协议。
特点:
- 多种 hash 算法:md5、crc16、crc32、crc32a、hsieh、murmur、jenkins
- 支持失败节点自动删除
- 后端 sharding 分片逻辑对业务透明,业务方的读写方式和操作单个 redis 一致
缺点:
- 增加了新的 proxy,需要维护其高可用。
- failover 逻辑需要自己实现,其本身不能支持故障的自动转移可扩展性差,进行扩缩容都需要手动干预
集群(直连型):
从redis 3.0之后版本支持redis-cluster集群,redis-cluster采用无中心结构,每个节点保存数据和整个集群状态,每个节点都和其他所有节点连接。
特点:
- 无中心架构(不存在哪个节点影响性能瓶颈),少了 proxy 层。
- 数据按照 slot 存储分布在多个节点,节点间数据共享,可动态调整数据分布。
- 可扩展性,可线性扩展到 1000 个节点,节点可动态添加或删除。
- 高可用性,部分节点不可用时,集群仍可用。通过增加 slave 做备份数据副本
-实现故障自动 failover,节点之间通过 gossip 协议交换状态信息,用投票机制完成 slave到 master 的角色提升。
缺点:
- 资源隔离性较差,容易出现相互影响的情况。
- 数据通过异步复制,不保证数据的强一致性
高可用redis架构分析搭建,可以参考:高可用redis服务架构分析与搭建
4.使用过redis分布式锁么,它是怎么实现的?
先拿setnx来争抢锁,抢到之后,再用expire给锁加一个过期时间防止锁忘记了释放。
如果在setnx之后执行expire之前进程意外crash或者要重启维护了,那会怎么样?
set指令有非常复杂的参数,这个应该是可以同时把setnx和expire合成一条指令来用的!
5.使用过redis做异步队列么,你是怎么用的?有什么缺点?
一般使用list结构作为队列,rpush生产消息,lpop消费消息。当lpop没有消息的时候,要适当sleep一会再重试。
缺点:
- 在消费者下线的情况下,生产的消息会丢失,得使用专业的消息队列如rabbitmq等。
能不能生产一次消费多次呢?
使用pub/sub主题订阅者模式,可以实现1:n的消息队列。
6.什么是缓存穿透?如何避免?什么是缓存雪崩?何如避免?
缓存穿透
一般的缓存系统,都是按照key去缓存查询,如果不存在对应的value,就应该去后端系统查找(比如db)。一些恶意的请求会故意查询不存在的key,请求量很大,就会对后端系统造成很大的压力。这就叫做缓存穿透。
如何避免?
- 对查询结果为空的情况也进行缓存,缓存时间设置短一点,或者该key对应的数据insert了之后清理缓存。
- 对一定不存在的key进行过滤。可以把所有的可能存在的key放到一个大的bitmap中,查询时通过该bitmap过滤。
缓存雪崩
当缓存服务器重启或者大量缓存集中在某一个时间段失效,这样在失效的时候,会给后端系统带来很大压力。导致系统崩溃。
如何避免?
- 在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。比如对某个key只允许一个线程查询数据和写缓存,其他线程等待。
- 做二级缓存,a1为原始缓存,a2为拷贝缓存,a1失效时,可以访问a2,a1缓存失效时间设置为短期,a2设置为长期
- 不同的key,设置不同的过期时间,让缓存失效的时间点尽量均匀。
这道相当常见,详细再参考下文,一定熟练掌握:redis缓存雪崩、缓存击穿、缓存穿透和常见的几种缓存模式
7.redis常用命令
管理命令
# dbsize 返回当前数据库 key 的数量。 # info 返回当前 redis 服务器状态和一些统计信息。 # monitor 实时监听并返回redis服务器接收到的所有请求信息。 # shutdown 把数据同步保存到磁盘上,并关闭redis服务。 # config get parameter 获取一个 redis 配置参数信息。(个别参数可能无法获取) # config set parameter value 设置一个 redis 配置参数信息。(个别参数可能无法获取) # config resetstat 重置 info 命令的统计信息。(重置包括:keyspace 命中数、 # keyspace 错误数、 处理命令数,接收连接数、过期 key 数) # debug object key 获取一个 key 的调试信息。 # debug segfault 制造一次服务器当机。 # flushdb 删除当前数据库中所有 key,此方法不会失败。小心慎用 # flushall 删除全部数据库中所有 key,此方法不会失败。小心慎用
工具命令
#redis-server:redis 服务器的 daemon 启动程序 #redis-cli:redis 命令行操作工具。当然,你也可以用 telnet 根据其纯文本协议来操作 #redis-benchmark:redis 性能测试工具,测试 redis 在你的系统及你的配置下的读写性能 $redis-benchmark -n 100000 –c 50 #模拟同时由 50 个客户端发送 100000 个 sets/gets 查询 #redis-check-aof:更新日志检查 #redis-check-dump:本地数据库检查
8.redis单例、主从模式、sentinel以及集群的配置方式及优缺点对比
redis单例、主从模式、sentinel以及集群的配置方式及优缺点对比
9.为什么redis 单线程却能支撑高并发?
10.redis常见性能问题和解决方案:
1).master写内存快照,save命令调度rdbsave函数,会阻塞主线程的工作,当快照比较大时对性能影响是非常大的,会间断性暂停服务,所以master最好不要写内存快照。
2).master aof持久化,如果不重写aof文件,这个持久化方式对性能的影响是最小的,但是aof文件会不断增大,aof文件过大会影响master重启的恢复速度。master最好不要做任何持久化工作,包括内存快照和aof日志文件,特别是不要启用内存快照做持久化,如果数据比较关键,某个slave开启aof备份数据,策略为每秒同步一次。
3).master调用bgrewriteaof重写aof文件,aof在重写的时候会占大量的cpu和内存资源,导致服务load过高,出现短暂服务暂停现象。
4).redis主从复制的性能问题,为了主从复制的速度和连接的稳定性,slave和master最好在同一个局域网内
redis性能分析相关问题,限于篇幅,给出文章链接:
11.redis的并发竞争问题如何解决?
redis为单进程单线程模式,采用队列模式将并发访问变为串行访问。redis本身没有锁的概念,redis对于多个客户端连接并不存在竞争,但是在jedis客户端对redis进行并发访问时会发生连接超时、数据转换错误、阻塞、客户端关闭连接等问题,这些问题均是由于客户端连接混乱造成。对此有2种解决方法:
- 客户端角度,为保证每个客户端间正常有序与redis进行通信,对连接进行池化,同时对客户端读写redis操作采用内部锁synchronized。
- 服务器角度,利用setnx实现锁。
注:对于第一种,需要应用程序自己处理资源的同步,可以使用的方法比较通俗,可以使用synchronized也可以使用lock;第二种需要用到redis的setnx命令,但是需要注意一些问题。
12.说说redis的内存淘汰策略
直接点这里:redis的内存淘汰策略
13.redis最适合的场景
redis最适合所有数据in-momory的场景,虽然redis也提供持久化功能,但实际更多的是一个disk-backed的功能,跟传统意义上的持久化有比较大的差别,那么可能大家就会有疑问,似乎redis更像一个加强版的memcached,那么何时使用memcached,何时使用redis呢?
如果简单地比较redis与memcached的区别,大多数都会得到以下观点:
- redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,zset,hash等数据结构的存储。
- redis支持数据的备份,即master-slave模式的数据备份。
- redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
会话缓存(session cache)
最常用的一种使用redis的情景是会话缓存(session cache)。用redis缓存会话比其他存储(如memcached)的优势在于:redis提供持久化。当维护一个不是严格要求一致性的缓存时,如果用户的购物车信息全部丢失,大部分人都会不高兴的,现在,他们还会这样吗?
幸运的是,随着 redis 这些年的改进,很容易找到怎么恰当的使用redis来缓存会话的文档。甚至广为人知的商业平台magento也提供redis的插件。
全页缓存(fpc)
除基本的会话token之外,redis还提供很简便的fpc平台。回到一致性问题,即使重启了redis实例,因为有磁盘的持久化,用户也不会看到页面加载速度的下降,这是一个极大改进,类似php本地fpc。
再次以magento为例,magento提供一个插件来使用redis作为全页缓存后端。
此外,对wordpress的用户来说,pantheon有一个非常好的插件 wp-redis,这个插件能帮助你以最快速度加载你曾浏览过的页面。
队列
reids在内存存储引擎领域的一大优点是提供 list 和 set 操作,这使得redis能作为一个很好的消息队列平台来使用。redis作为队列使用的操作,就类似于本地程序语言(如python)对 list 的 push/pop 操作。
如果你快速的在google中搜索“redis queues”,你马上就能找到大量的开源项目,这些项目的目的就是利用redis创建非常好的后端工具,以满足各种队列需求。例如,celery有一个后台就是使用redis作为broker,你可以从这里去查看。
排行榜/计数器
redis在内存中对数字进行递增或递减的操作实现的非常好。集合(set)和有序集合(sorted set)也使得我们在执行这些操作的时候变的非常简单,redis只是正好提供了这两种数据结构。所以,我们要从排序集合中获取到排名最靠前的10个用户–我们称之为“user_scores”。
当然,这是假定你是根据你用户的分数做递增的排序。如果你想返回用户及用户的分数,你需要这样执行:zrange user_scores 0 10 withscores
agora games就是一个很好的例子,用ruby实现的,它的排行榜就是使用redis来存储数据的,你可以在这里看到。
发布/订阅
最后(但肯定不是最不重要的)是redis的发布/订阅功能。发布/订阅的使用场景确实非常多。我已看见人们在社交网络连接中使用,还可作为基于发布/订阅的脚本触发器,甚至用redis的发布/订阅功能来建立聊天系统!
上一篇: python将txt文件读入为np.array的方法
下一篇: .NET高级特性-Emit(1)