欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Flume -- 初识flume、source和sink

程序员文章站 2022-04-09 13:41:57
Flume – 初识flume、source和sink 目录基本概念常用源 Source常用sink 基本概念  什么叫flume? 分布式,可靠的大量日志收集、聚合和移动工具。  events 事件,是一行数据的字节数据,是flume发送文件的基本单位。  flume配置文件 重命名flum ......

Flume – 初识flume、source和sink

目录
基本概念
常用源 Source
常用sink

 

基本概念

 什么叫flume?
  分布式,可靠的大量日志收集、聚合和移动工具。

 events
  事件,是一行数据的字节数据,是flume发送文件的基本单位。

 flume配置文件
  重命名flume-env.sh.template为flume-env.sh,并添加[export JAVA_HOME=/soft/jdk]

 flume的Agent
  source //从哪儿读数据。 负责监控并收集数据。相对于channel是生产者。
  channel //数据通道。 通道,相当于数据缓冲区。
  sink //将数据传送往哪儿。 沉槽,负责将数据放置在指定位置。相对于channel是消费者。

 flume如何使用
  在flume的conf文件下,创建conf后缀的文件,使用flume命令启动

 flume命令
  启动:flume-ng agent -f /soft/flume/conf/example.conf -n a1

常用源 Source

 执行源:Exec Sour //通过linux命令作为source。缺点:失败后数据会丢失,不能保证数据的完整性。
  #定义源:exec
  a1.source.r1.type = exec
  a1.source.r1.command = tail -F /home/centos/1.txt
 滚动目录源:Spooling Directory Source //监控目录,如果目录下有新文件产生,机会将其消费
  #定义源:spoodir
  a1.source.r1.type = spooldir
  #指定监控目录
  a1.source.r1.spoolDir = /home/centos/log
 指定类型的文件:tailDir source #监控目录中指定类型的文件,并监控其消费偏移量;
 通过~/.flume/taildir_position.json监控并实时记录文件偏移量,可通过a1.sources.r1.positionFile配置进行修改
  #定义源:TAILDIR
  a1.source.r1.type = TAILDIR
  #指定监控文件组
  a1.source.r1.filegroups = g1
  #指定g1组中包含的文件
  a1.source.r1.filegroups.g1 = /home/centos/log/.*log
 顺序数字源:Sequence Generator Source //产生顺序数字的源,用作测试
  #定义源:seq
  a1.source.r1.type = seq
  #定义一次RPC产生的批次数量
  a1.source.r1.batchSize = 1024
 压力源:Stress Source //测试集群压力,用作负载测试
  #定义源:stress
  a1.source.r1.type = org.apache.flume.source.StressSource
  #一个event产生的数据量
  a1.source.r1.size = 1073741824

常用sink

 日志&控制台:logger sink
  a1.sinks.k1.type = logger
 存储在本地文件:File Roll Sink
  #设置滚动文件sink
  a1.sinks.k1.type = file_roll
  #指定文件位置。若文件不存在会报错
  a1.sinks.k1.directory = /home/centos/log2
  #设置滚动周期间隔,0即不滚动;默认30s。
  a1.sinks.k1.sink.rollInterval = 0
 写入到hdfsL:HDFS Sink //默认SequenceFile,可以通过hdfs.fileType指定(SequenceFile, DataStream or CompressedStream)
  #指定类型
  a1.sinks.k1.type = hdfs
  #指定路径,不用单独创建文件夹
  a1.sinks.k1.hdfs.path = /flume/events/%y-%m-%d/%H
  #时间相关的配置,必须指定时间戳
  a1.sinks.k1.hdfs.useLocalTimeStamp = true
  #实例化文件的前缀
  a1.sinks.k1.hdfs.filePrefix = events-
  #滚动间隔,0为不滚动
  a1.sinks.k1.hdfs.rollInterval = 0
  #滚动大小;默认1024
  a1.sinks.k1.hdfs.rollSize = 1024
  #指定数据类型;默认为 sequenceFile
  a1.sinks.k1.hdfs.fileType = CompressedStream
  #指定压缩编解码器
  a1.sinks.k1.hdfs.codeC = gzip
 写入到Hbase:hbase sink //需要创建表,无法指定rowkey和col
  #设置类型
  a1.sinks.k1.type = hbase
  a1.sinks.k1.table = ns1:flume
  a1.sinks.k1.columnFaminly = f1
 写入到Hbase:regexhbase sink //需要创建表,可以手动指定rowKey和col
  #设置正则hbase类型
  a1.sinks.k1.type = hbase
  a1.sinks.k1.serializer = org.apache.flume.sink.hbase.RegexHbaseEventSerializer
  #手动指定rowkey和列,[ROW_KEY]必须些,且大写
  a1.sinks.k1.serializer.colNames = ROW_KEY,name,age
  #指定正则,与col对应
  a1.sinks.k1.serializer.regex = (.*),(.*),(.*)
  #指定rowkey索引
  a1.sinks.k1.serializer.rowKeyIndex = 0
  a1.sinks.k1.table = ns1:flume
  a1.sinks.k1.coluFamily = f1
 写入到Hive:hive sink //需要启动hive的事务性
  # 设置hive sink
  a1.sinks.k1.type = hive
  # 需要启动hive的metastore:hive --service metastore //metastore源数据仓库
  a1.sinks.k1.hive.metastore = thrift://s101:9083
  a1.sinks.k1.hive.database = default
  # 需要创建事务表
  a1.sinks.k1.hive.table = tx2
  # 指定列和字段的映射
  a1.sinks.k1.serializer = DELIMITED
  # 指定输入的格式,必须是双引号
  a1.sinks.k1.serializer.delimiter = "\t"
  # 指定hive存储文件展现方式,必须是单引号
  a1.sinks.k1.serializer.serdeSeparator = '\t'
  a1.sinks.k1.serializer.fieldnames =id,name,age
 写入到hive补充
  1、首先将/soft/hive/hcatalog/share/hcatalog中的所有jar拷贝到hive的lib库中
    cp /soft/hive/hcatalog/share/hcatalog/* /soft/hive/lib/
  2、启动hive的metastore
    hive --service metastore
  3、启动hive并创建事务表
    SET hive.support.concurrency = true;
    SET hive.enforce.bucketing = true;
    SET hive.exec.dynamic.partition.mode = nonstrict;
    SET hive.txn.manager = org.apache.hadoop.hive.ql.lockmgr.DbTxnManager;
    SET hive.compactor.initiator.on = true;
    SET hive.compactor.worker.threads = 1;
    create table tx2(id int ,name string, age int ) clustered by (id) into 2 buckets stored as orc TBLPROPERTIES('transactional'='true');
  4、启动flume,并使用以上的配置文件
    flume-ng agent -f k_hive.conf -n a1
  5、输入数据验证
    1 tom 18