基于用户的推荐算法余弦相似性实现
程序员文章站
2022-04-09 12:23:59
...
1. [文件] cosine.py
#-*- coding: utf-8 -*- ''' Created on 2012-9-3 @author: Jekey 余弦相关性,如果数据稀疏,考虑使用该算法 ''' import codecs from math import sqrt users = {"Angelica": {"Blues Traveler": 3.5, "Broken Bells": 2.0, "Norah Jones": 4.5, "Phoenix": 5.0, "Slightly Stoopid": 1.5, "The Strokes": 2.5, "Vampire Weekend": 2.0}, "Bill":{"Blues Traveler": 2.0, "Broken Bells": 3.5, "Deadmau5": 4.0, "Phoenix": 2.0, "Slightly Stoopid": 3.5, "Vampire Weekend": 3.0}, "Chan": {"Blues Traveler": 5.0, "Broken Bells": 1.0, "Deadmau5": 1.0, "Norah Jones": 3.0, "Phoenix": 5, "Slightly Stoopid": 1.0}, "Dan": {"Blues Traveler": 3.0, "Broken Bells": 4.0, "Deadmau5": 4.5, "Phoenix": 3.0, "Slightly Stoopid": 4.5, "The Strokes": 4.0, "Vampire Weekend": 2.0}, "Hailey": {"Broken Bells": 4.0, "Deadmau5": 1.0, "Norah Jones": 4.0, "The Strokes": 4.0, "Vampire Weekend": 1.0}, "Jordyn": {"Broken Bells": 4.5, "Deadmau5": 4.0, "Norah Jones": 5.0, "Phoenix": 5.0, "Slightly Stoopid": 4.5, "The Strokes": 4.0, "Vampire Weekend": 4.0}, "Sam": {"Blues Traveler": 5.0, "Broken Bells": 2.0, "Norah Jones": 3.0, "Phoenix": 5.0, "Slightly Stoopid": 4.0, "The Strokes": 5.0}, "Veronica": {"Blues Traveler": 3.0, "Norah Jones": 5.0, "Phoenix": 4.0, "Slightly Stoopid": 2.5, "The Strokes": 3.0} } #cosine 距离 def cosine(rate1,rate2): sum_xy = 0 sum_x=0 sum_y=0 n=0 for key in rate1: if key in rate2: n+=1 x=rate1[key] y=rate2[key] sum_xy += x*y sum_x +=x*x sum_y +=y*y #计算距离 if n==0: return 0 else: sx=pow(sum_x,1/2) sy=pow(sum_y,1/2) if sum_xy<>0: denominator=sx*sy/sum_xy else: denominator=0 return denominator #返回最近距离用户 def computeNearestNeighbor(username,users): distances = [] for key in users: if key<>username: distance = cosine(users[username],users[key]) distances.append((distance,key)) distances.sort() return distances #推荐 def recommend(username,users): #获得最近用户的name nearest = computeNearestNeighbor(username,users)[0][1] recommendations =[] #得到最近用户的推荐列表 neighborRatings = users[nearest] for key in neighborRatings: if not key in users[username]: recommendations.append((key,neighborRatings[key])) recommendations.sort(key=lambda rat:rat[1], reverse=True) return recommendations if __name__ == '__main__': print recommend('Hailey', users)