Pandas删除数据的几种情况(小结)
程序员文章站
2022-04-09 11:53:52
开始之前,pandas中dataframe删除对象可能存在几种情况
1、删除具体列
2、删除具体行
3、删除包含某些数值的行或者列
4、删除包含某些字符、文字的...
开始之前,pandas中dataframe删除对象可能存在几种情况
1、删除具体列
2、删除具体行
3、删除包含某些数值的行或者列
4、删除包含某些字符、文字的行或者列
本文就针对这四种情况探讨一下如何操作。
数据准备
模拟了一份股票交割的记录。
in [1]: import pandas as pd in [2]: data = { ...: '证券名称' : ['格力电器','视觉中国','成都银行','中国联通','格力电器','视觉中国','成都银行','中国联通'], ...: '摘要': ['证券买入','证券买入','证券买入','证券买入','证券卖出','证券卖出','证券卖出','证券卖出'], ...: '成交数量' : [500,1000,1500,2000,500,500,1000,1500], ...: '成交金额' : [-5000,-10000,-15000,-20000,5500,5500,11000,15000] ...: } ...: in [3]: df = pd.dataframe(data, index = ['2018-2-1','2018-2-1','2018-2-1','2018-2-1','2018-2-2','2018-2-2','2018-2-2','2018-2-3']) in [4]: df out[4]: 成交数量 成交金额 摘要 证券名称 2018-2-1 500 -5000 证券买入 格力电器 2018-2-1 1000 -10000 证券买入 视觉中国 2018-2-1 1500 -15000 证券买入 成都银行 2018-2-1 2000 -20000 证券买入 中国联通 2018-2-2 500 5500 证券卖出 格力电器 2018-2-2 500 5500 证券卖出 视觉中国 2018-2-2 1000 11000 证券卖出 成都银行 2018-2-3 1500 15000 证券卖出 中国联通
删除具体列
in [5]: df.drop('成交数量',axis=1) out[5]: 成交金额 摘要 证券名称 2018-2-1 -5000 证券买入 格力电器 2018-2-1 -10000 证券买入 视觉中国 2018-2-1 -15000 证券买入 成都银行 2018-2-1 -20000 证券买入 中国联通 2018-2-2 5500 证券卖出 格力电器 2018-2-2 5500 证券卖出 视觉中国 2018-2-2 11000 证券卖出 成都银行 2018-2-3 15000 证券卖出 中国联通
删除具体行
in [6]: df.drop('2018-2-3') out[6]: 成交数量 成交金额 摘要 证券名称 2018-2-1 500 -5000 证券买入 格力电器 2018-2-1 1000 -10000 证券买入 视觉中国 2018-2-1 1500 -15000 证券买入 成都银行 2018-2-1 2000 -20000 证券买入 中国联通 2018-2-2 500 5500 证券卖出 格力电器 2018-2-2 500 5500 证券卖出 视觉中国 2018-2-2 1000 11000 证券卖出 成都银行
也可以根据行号删除记录,比如删除第三行
in [22]: df.drop(df.index[7]) out[22]: 成交数量 成交金额 摘要 证券名称 2018-2-1 500 -5000 证券买入 格力电器 2018-2-1 1000 -10000 证券买入 视觉中国 2018-2-1 1500 -15000 证券买入 成都银行 2018-2-1 2000 -20000 证券买入 中国联通 2018-2-2 500 5500 证券卖出 格力电器 2018-2-2 500 5500 证券卖出 视觉中国 2018-2-2 1000 11000 证券卖出 成都银行
注意,这个办法其实不是按照行号删除,而是按照索引删除。如果index为3,则会将前4条记录都删除。这个方法支持一个范围,以及用负数表示从末尾删除。
删除特定数值的行(删除成交金额小于10000)
in [7]: df[ df['成交金额'] > 10000] out[7]: 成交数量 成交金额 摘要 证券名称 2018-2-2 1000 11000 证券卖出 成都银行 2018-2-3 1500 15000 证券卖出 中国联通
本例其实是筛选,如果需要保留,可以将筛选后的对象赋值给自己即可。
删除某列包含特殊字符的行
in [11]: df[ ~ df['证券名称'].str.contains('联通') ] out[11]: 成交数量 成交金额 摘要 证券名称 2018-2-1 500 -5000 证券买入 格力电器 2018-2-1 1000 -10000 证券买入 视觉中国 2018-2-1 1500 -15000 证券买入 成都银行 2018-2-2 500 5500 证券卖出 格力电器 2018-2-2 500 5500 证券卖出 视觉中国 2018-2-2 1000 11000 证券卖出 成都银行
如果想取包含某些字符的记录,可以去掉~
in [12]: df[ df['证券名称'].str.contains('联通') ] out[12]: 成交数量 成交金额 摘要 证券名称 2018-2-1 2000 -20000 证券买入 中国联通 2018-2-3 1500 15000 证券卖出 中国联通
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。