欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  后端开发

递归算法的时间复杂度是什么

程序员文章站 2022-04-08 23:39:52
...

递归算法的时间复杂度是:【T(n)=o(f(n))】,它表示随问题规模n的增大,算法的执行时间增长率和f(n)增长率成正比,这称作算法的渐进时间复杂度。

递归算法的时间复杂度是什么

递归算法的时间复杂度

时间复杂度:

一般情况下,算法中基本操作重复的次数就是问题规模n的某个函数f(n),进而分析f(n)随n的变化情况并确定T(n)的数量级。这里用‘o’来表示数量级,给出算法时间复杂度。

T(n)=o(f(n));

它表示随问题规模n的增大,算法的执行时间增长率和f(n)增长率成正比,这称作算法的渐进时间复杂度。而我们一般情况下讨论的最坏的时间复杂度。

推荐课程:C语言教程

空间复杂度:

算法的空间复杂度并不是实际占用的空间,而是计算整个算法空间辅助空间单元的个数,与问题的规模没有关系。算法的空间复杂度S(n)定义为该算法所耗费空间的数量级。

S(n)=o(f(n))

若算法执行所需要的辅助空间相对于输入数据n而言是一个常数,则称这个算法空间复杂度辅助空间为o(1);

递归算法空间复杂度:递归深度n*每次递归所要的辅助空间,如果每次递归所需要的辅助空间为常数,则递归空间复杂度o(n)。

递归算法时间复杂度的计算方程式是一个递归方程:

递归算法的时间复杂度是什么

在引入递归树之前可以考虑一个例子:

T(n) = 2T(n/2) + n2

迭代2次可以得:

T(n) = n2 + 2(2T(n/4) + (n/2) 2)

还可以继续迭代,将其完全展开可得:

T(n) = n2 + 2((n/2) 2 +
2((n/22)2 + 2((n/23) 2 +
2((n/24) 2 +…+2((n/2i) 2 +
2T(n/2i + 1)))…))))……(1)

而当n/2i+1 == 1时,迭代结束。

将(1)式小括号展开,可得:

T(n) = n2 + 2(n/2)2 +
22(n/22) 2 + … + 2i(n/2i)2 +
2i+1T(n/2i+1)

这恰好是一个树形结构,由此可引出递归树法。

递归算法的时间复杂度是什么

图中的(a)(b)(c)(d)分别是递归树生成的第1,2,3,n步。每一节点中都将当前的*项n2留在其中,而将两个递归项T(n/2)
+ T(n/2)分别摊给了他的两个子节点,如此循环。

图中所有节点之和为:

[1 + 1/2 + (1/2)2 + (1/2)3 + … + (1/2)i] n2 = 2n2

可知其时间复杂度为O(n2)

可以得到递归树的规则为:

(1)每层的节点为T(n) = kT(n / m) + f(n)中的f(n)在当前的n/m下的值;

(2)每个节点的分支数为k;

(3)每层的右侧标出当前层中所有节点的和。

再举个例子:

T(n) = T(n/3) + T(2n/3) + n

其递归树如下图所示:

递归算法的时间复杂度是什么

可见每层的值都为n,从根到叶节点的最长路径是:

因为最后递归的停止是在(2/3)kn == 1.则

于是  

递归算法的时间复杂度是什么

T(n) = O(nlogn) 

总结,利用此方法解递归算法复杂度:

f(n) = af(n/b) + d(n)

1.当d(n)为常数时:

  递归算法的时间复杂度是什么

2.当d(n) = cn 时:

递归算法的时间复杂度是什么

3.当d(n)为其他情况时可用递归树进行分析。

由第二种情况知,若采用分治法对原算法进行改进,则着重点是采用新的计算方法缩小a值。  

以上就是递归算法的时间复杂度是什么的详细内容,更多请关注其它相关文章!