欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

BZOJ3122: [Sdoi2013]随机数生成器(BSGS)

程序员文章站 2022-04-08 19:13:42
题意 "题目链接" Sol 这题也比较休闲。 直接把$X_{i+1} = (aX_i + b) \pmod P$展开,推到最后会得到这么个玩意儿 $$ a^{i 1} (x_1 + \frac{b}{a 1}) \frac{b}{a 1} \equiv T \pmod P $$ 然后再合并一下就可以 ......

题意

题目链接

sol

这题也比较休闲。

直接把\(x_{i+1} = (ax_i + b) \pmod p\)展开,推到最后会得到这么个玩意儿

\[ a^{i-1} (x_1 + \frac{b}{a-1}) - \frac{b}{a-1} \equiv t \pmod p \]

然后再合并一下就可以大力bsgs了。

有些细节需要特判一下

#include<bits/stdc++.h> 
#define pair pair<int, int>
#define mp(x, y) make_pair(x, y)
#define fi first
#define se second
#define int long long 
#define ll long long 
#define ull unsigned long long 
#define fin(x) {freopen(#x".in","r",stdin);}
#define fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int maxn = 1e6 + 10, inf = 1e9 + 10;;
int mod;
const double eps = 1e-9;
template <typename a, typename b> inline bool chmin(a &a, b b){if(a > b) {a = b; return 1;} return 0;}
template <typename a, typename b> inline bool chmax(a &a, b b){if(a < b) {a = b; return 1;} return 0;}
template <typename a, typename b> inline ll add(a x, b y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename a, typename b> inline void add2(a &x, b y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename a, typename b> inline ll mul(a x, b y) {return 1ll * x * y % mod;}
template <typename a, typename b> inline void mul2(a &x, b y) {x = (1ll * x * y % mod + mod) % mod;}
template <typename a> inline void debug(a a){cout << a << '\n';}
template <typename a> inline ll sqr(a x){return 1ll * x * x;}
template <typename a, typename b> inline ll fp(a a, b p, int md = mod) {int b = 1;while(p) {if(p & 1) b = mul(b, a);a = mul(a, a); p >>= 1;}return b;}
template <typename a> a inv(a x) {return fp(x, mod - 2);}
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int a, b, x1, end;
//x_{i+1} = (ax_i + b) % p
//a^ans = x % p
//a^{i * k - j} = x % p
//a^{i * k} = x * a^j % p
map<int, int> mp;

/*
int query(int a, int x, int p) {
    if(__gcd(a, p) != 1) return -2;
    int base = 1;
    for(int i = 0; i <= p; i++) {
        if(base % p == x) return i;
        mul2(base, a);
    }
    return -2;
}
*/

int query(int a, int x, int p) {
    if(__gcd(a, p) != 1) return -2;
    mp.clear(); int block = ceil(sqrt(p)), base = fp(a, block);
    for(int i = 0, cur = x; i <= block; i++, mul2(cur, a)) mp[cur] = i;
    for(int i = 1, cur = base; i <= block; i++, mul2(cur, base)) 
        if(mp[cur]) 
            return i * block - mp[cur];
    return -2;
}

void solve() {
    mod = read(); a = read(); b = read(); x1 = read(); end = read();
    if(x1 == end) {puts("1"); return ;}
    if(!a) {
        if(!b) {puts(end == x1 ? "1" : "-1");return ;}
        else {puts(end == b ? "2" : "-1");return ;}
    }
    if(a == 1) {
        if(!b) {puts(end == x1 ? "1" : "-1");return ;}
        else {
            //int tmp = add(end, -x1 + mod) % b;
            //cout << tmp << '\n';
            cout << mul(add(end, -x1), inv(b)) + 1 << '\n'; 
            return ;
        }
    }
    int tmp = mul(b, inv(a - 1));
    add2(x1, tmp); add2(end, tmp); 
    mul2(end, inv(x1));
    cout << query(a, end, mod) + 1 << '\n';
}
signed main() {
    //freopen("a.in", "r", stdin);
    for(int t = read(); t--; solve());
    return 0;
}