欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python的函数最详解

程序员文章站 2022-03-04 11:27:14
目录一、函数入门1.概念2.定义函数的语法格式函数名形参列表返回值3.函数的文档(注释→help)4.举例二、函数的参数1.可变对象2.参数收集(不定个数的参数)3.解决一个实际问题4.参数收集(收集...

一、函数入门

1.概念

  • 函数是可以重复执行一定任务的代码片段,具有独立的固定的输入输出接口。
  • 函数定义的本质,是给一段代码取个名字,方便以后重复使用
  • 为了方便以后调用这个函数,在定义它的时候,就需要明确它的输入(参数)与输出(返回值)

2.定义函数的语法格式

def 函数名(形参列表):
    #可执行语句
    return 返回值

函数名

  • 只要是合法的标识符即可(同变量命名)
  • 为了提高可读性,建议函数名由一个或多个有意义的单词组成,单词之间用下划线_分隔,字母全部小写

形参列表

  • 在函数名后面的括号内,多个形参用逗号分隔,可以没有参数
  • 参数可以有默认值,可以用等号=直接指定默认值,有默认值的参数必须排最后
  • 没有默认值的参数,在调用的时候必须指定
  • 形参也可以没有,但是括号不能省略
  • 调用有默认值的参数要指定名字

返回值

  • 返回值可以没有,直接省略return这句话
  • 返回值可以是一个或多个,用逗号分隔,组合成一个元组
  • 返回值还可以是表达式
  • 多个返回值,不需要的用下划线顶替!

3.函数的文档(注释→help)

  • 一段被注释的文字对函数进行解释。
  • 可以用help()查看函数的文档,只要把一段字符串紧接着放在函数的声明行的后面,它就可以被help识别了。

4.举例

# 函数定义
def myfunc(arg1, arg2, arg3=none):
    ''' 
    this is a example for python documentation.
    这是一个为python函数提供文档的例子。
    arg1: 第一个参数的说明
    arg2: 第二个参数的说明
    arg3: 第三个参数的说明(这个参数有默认值)
    v1, v2, v3: 返回值的说明 
    '''
    v1 = arg1 + arg2
    v2 = arg1 * arg2
    if arg3 is none:
        v3 = arg1 + arg2
    else:
        v3 = arg1 + arg2 + arg3
    return v1, v2, v3
# 函数调用
v1, v2, v3 = myfunc(5, 3, arg3=4)
print(v1, v2, v3)    #8 15 12
# 使用arg3的默认值调用函数
v1, v2, v3 = myfunc(5, 3)
print(v1, v2, v3)    #8 15 8
# 忽略一个返回值
v1, v2, _ = myfunc(5, 3)
print(v1, v2, v3)    #8 15 8
# 看看返回值是元组tuple,在返回的过程中被自动解包
print(type(myfunc(5,3)))    #<class 'tuple'>

二、函数的参数

  • 函数的参数是参数与外部可变的输入之间交互的通道。
  • 函数的参数名称应该满足标识符命名规范,应该有明确的含义,可通过参数名称知道每个参数的含义。
  • 在函数定义下面的注释中逐个注明函数(和返回值)的含义,以便用户即使不甚了解函数中的具体内容也能正确无误的使用它。
  • 实参:实际参数,从外面传递来的实际的参数
  • 形参:形式参数,在函数内部它形式上的名字
  • 调用函数时,实参按照顺序位置与形参绑定,称为位置参数(positional argument)
  • 也可以在调用时,写明实参与形参的对应关系,称作传递关键字参数(keyword argument),这时候位置信息被忽略了
  • 同时传递位置参数与关键字参数,应该先传递位置参数,再传递关键字参数!
  • 函数定义的时候,可以指定默认值,但带默认值的参数必须列在参数列表的最后
#举一个小栗子,计算纸箱子的体积
def cube_volume(length, width, height = 0.25):
    '''
    计算纸箱子的体积(单位:m)
    length: 长;    width: 宽
    height: 高(默认参数0.25)
    v: 返回值,纸箱的体积,单位m**3
    '''
    if length <= 0:
        print('length must larger than 0!')
        return 0
    if width <= 0:
        print('width must larger than 0!')
        return 0
    if height <= 0:
        print('height must larger than 0!')
        return 0
    v = length*width*height
    print('length = %.2f; width = %.2f; height = %.2f; cube volume = %.2f' % \
          (length, width, height, v))
    return v
# 使用位置参数调用
v = cube_volume(1, 2, 3)
# 使用关键字参数调用
v = cube_volume(width = 1, height = 2, length = 3)
# 位置参数和关键字参数混用
v = cube_volume(1, height = 2, width = 3)
# 关键字参数在位置参数之前会报错
# v = cube_volume(width = 1, 2, 3)

1.可变对象

  • 如果参数是可变对象(如列表),函数内部对此对象的修改会在函数执行后仍然有效
  • 如果默认参数是可变对象,函数内部修改了此对象后,函数默认值也发生了改变!
  • 实际函数传递进去的是地址,函数体不会将地址传递出来,但地址对应的值发生了变化。
# 对列表的乘方运算
def pow_list(x, p):
    '''
    power of a list
    x: list
    p: power
    not return value
    '''
    for i in range(len(x)):
        x[i] **= p
    #这样会输出乘方后的值,但不会改变x列表里的值
    #因为在计算时将x中的值传入了新的参数进行计算
    #for i in x:
    #    i **= p
    #    print(i)
    #print(x)
x = [1,2,3,5,7,9,10,12]
pow_list(x,2)
print(x)
# 可见函数内部对列表x中元素的更改,当函数退出之后依然有效

利用可变对象的特点,可以制作一种隐藏的参数记录器

# 隐藏的参数记录器
def growing_list(x, y=[]):
    y.append(x)
    print(y)
# 重复执行growing_list(‘a')会发生什么结果?
growing_list(2)         #[2]
growing_list('张三')    #[2, '张三']
growing_list(22333)     #[2, '张三', 22333]

2.参数收集(不定个数的参数)

  • 参数收集,指定是可以往函数内传递不定个数的参数,例如有时候传递3个,有时候传递5个,有时候传递10个,等等。
  • 传递不定个数的参数,要在定义参数时,加上一个星号“*”(形参为空的tuple)。
  • 带星号的参数可以位于参数列表的任意位置(不一定是开头也不一定是结尾),python要求一个函数只能有一个带星参数。
# 不定个数的数字求和
def my_sum(*t):
    # 带星号的输入参数被当作元组处理
    print(t, type(t))
    sum = 0
    for s in t:
        sum += s
    return sum
# 事实上该函数接受了不定个数的输入参数
my_sum(1,2,3,4,2233)

如果带星参数后面还有别的参数,则它们必须要用关键字参数的方式传递,否则python不知道它们到底是啥,都会给收集到带星参数里。

# 不定个数的数字乘方后求和
def pow_sum(*t, p):
    # 带星号的输入参数被当作元组处理
    print(t, type(t))
    sum = 0
    for s in t:
        sum += s**p
    return sum
# 最后一个参数p,需要指定关键字传递
pow_sum(1,2,3,4,2233,p=2)
# 如果不指定关键字传递呢?会报错
# pow_sum(1,2,3,4,2233,2)

3.解决一个实际问题

# 不定个数的数字加权求和
# 权重随着数字的个数而发生变化
def weighted_sum(x1,x2,*y):
    sum = 0
    n = len(y)
    weight = 1/3/n
    for i in y:
        sum += weight*i
    return sum+1/3*x1+1/3*x2
weighted_sum(1,2,3)
weighted_sum(1,2,3,22,44,55)
weighted_sum(1,2,3,4,5,6)

4.参数收集(收集关键字参数)

  • python除了带一个型号的参数,还支持带两个星号的参数。它的功能是收集关键字参数。
  • 一个函数,至多可以带一个一星参数(收集位置参数),加上一个二星参数(收集关键字参数)。
  • 二星参数在函数内部以字典的形式存在。
  • 二星参数必须在参数列表的末尾,它后面不能再有别的关键字参数和位置参数了。
# 测试一星参数和两星参数
def test_star(a, b, c, *onestar, **twostar):
    print('a = %d; b = %d; c = %d' % (a, b, c))
    print(onestar, type(onestar))
    print(twostar, type(twostar))
test_star(1, 2, 3, 4, 5, 6, s1 = 7, s2 = 8, s3 = 9)
# 换个顺序呢?
# test_star(1, 2, 3, 4, 5, 6, s1 = 7, s2 = 8, s3 = 9, a = 10, b = 11, c = 12)
# 报错了,二星参数后面不能再传递关键字参数了(当然位置参数也不行)

“参数收集”功能,会让带星参数尽量少的收集,把更多参数留给正常的位置参数和关键字参数

# 如果有默认参数,要注意可能引起的bug
def test_star(a, b, c, p = 5, *onestar, **twostar):
    print('a = %d; b = %d; c = %d; p = %d' % (a, b, c, p))    #a = 1; b = 2; c = 3; p = 4
    print(onestar, type(onestar))            #(5, 6) <class 'tuple'>
    print(twostar, type(twostar))            #{'s1': 7, 's2': 8, 's3': 9} <class 'dict'>
# 会传递一个p=4进去,而不是设想的,onestar=(4,5,6)
test_star(1, 2, 3, 4, 5, 6, s1 = 7, s2 = 8, s3 = 9)

5.逆向参数收集(炸开参数)

  • 在参数外部定义好了的列表、元组、字典等,可以在传参的时候被“炸开”,其中的内容被自动分配到参数列表中
  • “炸”列表或者元组,需要在前面添加一个星号。
  • “炸”字典,需要在前面添加两个星号。
# 炸参数例子
def zha(a,b,c):
    print(a,b,c)
# 炸元组
z = (1,2,3)            #1 2 3
zha(*z)
# 炸列表
z = [4,5,6]            #4 5 6
zha(*z)
# 炸字典
z = {'a':7,'b':8,'c':9}    #7 8 9
zha(**z)
# 炸字典
z = {'c':7,'a':8,'b':9}    #8 9 7
zha(**z)
# 如果炸开后参数个数或key不匹配,会报错
# z = {'c':7,'a':8}
# zha(**z)

6.参数的内存管理

  • python的参数传递,传递的是参数值而非参数地址。参数值被复制后传递进函数。
  • 对于数值类型的参数(整型、浮点、复数等),在函数内改变参数值,函数外面不受影响。
  • 对于容器类型的参数(列表、字典、字符串等),在函数内改变了容器里的内容,在函数的外面也可以体现出来。
# 传递数值类型参数
# 在函数内修改,在函数外面不受影响
def mod_para1(a,b):
    print('in mod_para1, before modification: a = %d; b = %d' % (a,b))    #a = 2; b = 8
    a *= 2
    b += 4
    print('in mod_para1, after modification: a = %d; b = %d' % (a,b))    #a = 4; b = 12
a = 2
b = 8
print('out of mod_para1, before modification: a = %d; b = %d' % (a,b))    #a = 2; b = 8
mod_para1(a,b)
print('out of mod_para1, after modification: a = %d; b = %d' % (a,b))    #a = 2; b = 8
  • 传递容器类型参数
  • 在函数内修改,在函数外面也能体现,也可以用这种方法向外界传递信息
  • 如果不希望容器类型中的内容被修改,请手动使用copy.copy() copy.deepcopy()方法
# 列表通过函数传参时,被改动了数据
def mod_para2(x):
    print('in mod_para2, before modification: x = ' + str(x))
    for i in range(len(x)):
        x[i] *= 2
    print('in mod_para2, after modification: x = ' + str(x))
x = [i for i in range(10)]
print('out of mod_para2, before modification: x = ' + str(x))
mod_para2(x)
print('out of mod_para2, after modification: x = ' + str(x))
import copy
a = [1,2,3]; b = copy.copy(a)
mod_para2(b); print(a,b)

7.函数中变量的作用域

  • 创建于函数外部,它是全局(global)的,它在这个py文件内部的任何地方可见。
  • 创建于函数内部,它是局部(local)的,它只能在函数内部才能访问,在函数外部不可见。
  • 全局变量和局部变量重名,函数内会访问到局部变量,函数外访问到全局变量。
  • 函数内部能访问全局变量,但不能修改!
  • 如果非要在函数内部修改全局变量,需要声明(不推荐这么干!)
gv1 = 1
def test():
    # gv1=2
    print('在函数内部访问全局变量:gv1 = %d' % gv1)    #1
    # gv1=2
test()
print('在函数外部访问全局变量:gv1 = %d' % gv1)    #1
  • ​​​​​​上面的例子,会在gv1 = 2的前一行,报错,看起来匪夷所思。
  • 事实上,这属于python对全局变量的“遮蔽”(hide)操作。在python的函数内部对不存在的变量赋值时,默认会重新定义局部变量。也就是说,在整个函数的内部,gv1都被重新定义了,这一操作会影响整个函数,因此会在它的上一行报错。
  • 为了访问被遮蔽的全局变量,需要使用globals()函数,将全局变量以字典的形式输出。(globals()['全局变量名'])——或者可以简单认为出全局变量通过globals()中的字典存储
  • 目前得知python3.10以后是不会报错了,但这种操作方法我们一般是不推荐的!
# 访问被遮蔽的全局变量
gv1 = 1
def test():
    # 用globals函数访问被遮蔽的全局变量
    print('在函数内部访问全局变量:gv1 = %d' % globals()['gv1'])
    gv1 = 2 
    print('在函数内部访问修改后的全局变量:gv1 = %d' % gv1)
test()
print('在函数外部访问全局变量:gv1 = %d' % gv1) # 函数内部修改的其实是同名局部变量,全局变量没有被修改。
  • 正常的做法是,只要有定义全局变量,函数内部的局部变量就不应该和它重名!
  • 可以用global语句,在函数内部声明全局变量,经过声明的全局变量在函数内部可以访问和修改。
# 测试全局变量
gv1 = 1
def test():
    global gv1 #全局变量我来撑控
    print('在函数内部访问全局变量:gv1 = %d' % gv1)    #1
    gv1+=1
test()
print('在函数外部访问全局变量:gv1 = %d' % gv1)    #2

8.获取指定范围内的变量

  • python提供了多个方法可以让我们访问到每个变量的“名字”和他们持有的“值”
  • 变量在内存的某处保存着“名字”-“值”对儿
  • globals(): 返回全局范围内所有变量组成的字典, globals()[“名字”]
  • locals(): 返回当前函数范围内的所有变量组成的字典
  • vars(object): 获取指定对象范围内的所有变量组成的字典(如果不传入object参数,vars和locals的作用完全相同)
  • 如果在全局范围内(在函数外部)调用locals(),则它的行为和globals()一样,也会列出全局范围内所有变量
  • 一般来说,上述函数所列出的变量字典,都不应该被修改!但事实上它们可以被修改!!不推荐使用这种方式修改变量。

三、局部函数(函数的嵌套)

  • python可以在函数的内部定义函数,多个函数相互嵌套。在其它函数内部的函数称为“局部函数”。
  • 局部函数是对外隐藏的,只能封闭在定义它的那一个函数的内部使用。
  • python的函数也可以作为返回值,如果把局部函数作为返回值,就可以在其它函数中使用了。

一个栗子(利用局部函数实现多种平均值的切换)

# 利用局部函数实现多种平均值的切换
def mymean(x, mtype = 'arithmetic'):
    '''计算列表x的平均值,用mtype定义计算哪种平均值,默认为算术平均值(arithmetic mean)    '''
    def arithmetic(x): 
        ''' 算术平均值(arithmetic mean)  '''
        m = sum(x)/len(x);    return m
    def geometric(x): 
        '''几何平均值(geometric mean) '''
        p = 1.;  n = len(x)
        for i in range(n):      p *= x[i]
        m = p ** (1/n);       return m
    def harmonic(x): 
        ''' 调和平均值(harmonic mean) '''
        s = 0.;      n = len(x)
        for i in range(n):        s += 1/x[i]
        m = 1/(s/n);        return m
    if mtype == 'arithmetic':    return arithmetic
    elif mtype == 'geometric':    return geometric
    elif mtype == 'harmonic':     return harmonic
    else:        return arithmetic
  • 类似于函数内局部变量遮蔽全局变量,局部函数内的变量也会遮蔽它所在函数的局部变量。
  • 因此使用局部函数时,同样要注意变量名的问题,不同层次的函数变量名应该不同。
  • 如果要访问上一层函数的局部变量,在局部函数中应该用nonlocal声明(类比于用global声明全局变量)。
# 局部函数内的变量与函数内的局部变量相冲突,这个程序会报错
def test1():
    fv = 1
    def test2():
        # print('局部函数内打印上层函数中的局部变量:%d' % fv) # 会在这里报错
        fv = 2
        print('局部函数内打印上层函数中的局部变量(更改后):%d' % fv)    #2        
    test2()
    print('上层函数内打印局部变量(更改后):%d' % fv)    #1        
    return fv
print('上层函数外打印局部变量(更改后):%d' % test1())    #1

用nolocal声明的方式可以使用/更改全局变量

# 局部函数内的变量与函数内的局部变量相冲突,应该改成这样就不报错了
def test1():
    fv = 1
    def test2():
        nonlocal fv # 用nonlocal声明,把fv声明为上一层函数的变量
        print('局部函数内打印上层函数中的局部变量:%d' % fv)    #1
        fv = 2
        print('局部函数内打印上层函数中的局部变量(更改后):%d' % fv)    #2    
    test2()
    print('上层函数内打印局部变量(更改后):%d' % fv)    #2
    return fv
print('上层函数外打印局部变量(更改后):%d' % test1())    #2

四、函数的高级内容

  • python中万物皆对象,函数也是对象。函数可以赋值给变量,可以作为函数的参数,也可以作为函数的返回值。
  • python中以函数作为对象的用法,可以类比于c语言中的函数指针,但比函数指针灵活的多,也更不容易出错。
# 以第三章栗子中mymean函数为例
# 将函数赋值给变量f
f = mymean2('arithmetic')
# 打印出来看看
print(f)
# 测试一下
x = list(range(1,10))
m = f(x)
print(m)
# 也可以像上面的例子一样,连起来写
print(mymean2('geometric')(x))

1.函数作为函数的形参

  • 有时候需要定义一个函数,让它内部的大致流程都固定下来,但其中某些部件可以替换:类似于汽车换发动机,电脑换显卡。
  • 这种“可替换式”的程序设计方式,在python中可以方便的通过将函数作为形参的方式来实现。

2.使用函数作为返回值

  • 将一个函数对象(可以是局部函数,也可以是别的地方定义的函数)作为返回值,适合“部件替换式”程序设计中,判断使用哪个部件。
  • 具体实现方式参见第三章局部变量栗子中的代码
# 以第三章栗子中mymean函数为例
# 编写另一个程序,对列表中的数字进行变换,变成均值为1的另一个列表
# 均值,可以是算术平均值、几何平均值、调和平均值
def mynormalize(x, mtype):
    f = mymean(mtype)
    m = f(x)
    return [i/m for i in x]
x = list(range(1,10))
mtype = 'geometric'
print(mymean(mtype)(x))
print(mynormalize(x, mtype))

3.递归

  • 在一个函数里面调用它自己,称为递归。
  • 递归可以视作一种隐式的循环,不需要循环语句控制也可实现重复执行某段代码。
  • 递归在大型复杂程序中非常有用,在数值和非数值算法中都能大显身手!
  • 使用递归的时候要注意,当一个函数不断调用自己的时候,必须保证在某个时刻函数的返回值是确定的,即不再调用自己。
# 斐波那契数列(fibonacci sequence)
# 在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用
def fibonacci(n):
    '''    fibonacci sequence
    f(0)=1, f(1) = 1, f(n) = f(n-1)+f(n-2)    '''
    if n == 0 or n == 1:        return 1
    else:      return fibonacci(n-1) + fibonacci(n-2)
# 测试一下,注意n不要设的太大,python的递归效率是比较低的,太大会死机
print(fibonacci(5))
# 斐波那契数列,前20位
print('fibonacci sequence:')
for i in range(20):
    print('%d: %d' % (i,fibonacci(i)))

五、局部函数与lambda

  • lambda表达式是现代编程语言引入的一种函数实现方式,它可以在一定程度上代替局部函数。
  • 对于局部函数,它的名字只在函数内部有意义,在函数外部看不到它的名字。即便使用返回值的形式传出来了,它的名字并没有被同时传出来。
  • 从命名的意义上讲,局部函数都是“隐姓埋名”的,出了这个函数就没人知道它的名字。
  • lambda表达式就相当于匿名函数。
# 一行中的hello world
greeting = lambda: print('hello lambda!')
greeting()
# lambda表达式可以放在数组里面,批量运行
l = [lambda x: x**2, lambda x: x**3, lambda x: x**4]
for p in l:
    print(p(3))

1.用lambda表达式代替局部函数

# 用lambda表达式代替局部函数
def mymean2(mtype = 'arithmetic'):
    '''    返回计算平均值所用的函数,用mtype定义计算哪种平均值,默认为算术平均值(arithmetic mean)    '''
    # 由于lambda表达式只能写一行,这里用numpy和scipy的现成的函数来实现
    import numpy as np
    import scipy.stats as st
    a = np.array(x)
    if mtype == 'arithmetic': # 算术平均值(arithmetic mean)
        return lambda a: np.mean(a)
    elif mtype == 'geometric':# 几何平均值(geometric mean)
        return lambda a: st.gmean(a)
    elif mtype == 'harmonic': # 调和平均值(harmonic mean)
        return lambda a: st.hmean(a)
    else:        # 默认:算术平均值(arithmetic mean)
        return lambda a: np.mean(a)
x = list(range(1,10))
print(x)
print(mymean2('arithmetic')(x))
print(mymean2('geometric')(x))
print(mymean2('harmonic')(x))

2.常见数学方法的内部函数

# 判断所有元素是否为true,相当于多重的and
help(all)
print(all([3>2,6<9]))
# 任意一个元素是否为true,相当于多重的or
help(any)
print(any([3>2,6<9]))
# 最大值和最小值
help(max)
help(min)
print(max([1,2,5,3]))
print(min([1,2,5,3]))
# 四舍五入(到小数点后第n位)
help(round)
print(round(3.1415926,3))
# 所有元素相加 
help(sum)
print(sum([1,2,3]))
print(sum([1,2,3],5))
# 乘幂
help(pow)
print(pow(6,2))
print(pow(6,2,5))
# 带余除法
help(divmod)
print(divmod(6,2))
# 绝对值
help(abs)
print(abs(-2.56))

总结

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注的更多内容!