dlib 03 dlib自带demo 人脸关键点检测器训练和测试
01 dlib自带demo
dlib库自带了比较完整的c++版本demo和python版本demo。
C++版本demo在 dlib/examples目录。
Python版本demo在dlib/python_examples。
demo的部分资源在:
dlib/examples/faces
dlib/examples/johns
dlib/examples/video_frames
demo另外需要的资源,在对应demo代码注释中可以找到。主要是一些训练好的模型。
02 人脸关键点检测器训练
02.01 人脸关键点检测器训练 资源
dlib提供了68个关键点的人脸图片及对应的数据文件。
代码:dlib\examples\train_shape_predictor_ex.cpp
工程名:train_shape_predictor_ex
测试数据:dlib\examples\faces
训练数据集图片
dlib\examples\faces\training_with_face_landmarks.xml
dlib\examples\faces\2007_007763.jpg
dlib\examples\faces\2008_001009.jpg
dlib\examples\faces\2008_001322.jpg
dlib\examples\faces\2008_002079.jpg
测试数据及图片
dlib\examples\faces\testing_with_face_landmarks.xml
dlib\examples\faces\2008_002470.jpg
dlib\examples\faces\2008_002506.jpg
dlib\examples\faces\2008_004176.jpg
dlib\examples\faces\2008_007676.jpg
dlib\examples\faces\2009_004587.jpg
02.02 项目设置
把examples解决方案中的train_shape_predictor_ex工程设置为启动项。
配置属性==>调试==>命令参数==>..\..\..\examples\faces
配置属性==>调试==>工作目录==>$(OutDir)
02.03 训练
Debug版本训练大约33分钟,Release版本训练大约1.8分钟。
训练结果:
Fitting trees...
Training complete
mean training error: 2.40105e-05
mean testing error: 0.0867148
生成15.8MB的 dlib\build\x64_19.6_examples\Debug\sp.dat
模型文件。
02.04 测试
使用人脸关键点检测demo,face_landmark_detection_ex。参见03
03 人脸关键点检测
02.01 人脸关键点检测 资源
dlib提供了68个关键点的人脸图片及对应的数据文件。
代码:dlib\examples\face_landmark_detection_ex.cpp
工程名:face_landmark_detection_ex
测试数据:dlib\examples\faces
dlib\examples\faces\bald_guys.jpg # 有人脸
dlib\examples\faces\dogs.jpg # 没人脸
也可以是其他任何人脸图片
02 中生成的sp.dat模型文件。
03.02 项目配置
把examples解决方案中的train_shape_predictor_ex工程设置为启动项。
配置属性==>调试==>命令参数==>sp.dat ..\..\..\examples\faces\bald_guys.jpg
配置属性==>调试==>工作目录==>$(OutDir)
03.03 运行效果
测试01:sp.dat ……\examples\faces\bald_guys.jpg
processing image ..\..\..\examples\faces\bald_guys.jpg
Number of faces detected: 24
number of parts: 68
pixel position of first part: (2939, 2768)
pixel position of second part: (2935, 2796)
number of parts: 68
pixel position of first part: (2149, 2707)
pixel position of second part: (2148, 2759)
number of parts: 68
pixel position of first part: (130, 247)
pixel position of second part: (128, 292)
number of parts: 68
pixel position of first part: (2111, 1626)
pixel position of second part: (2110, 1676)
number of parts: 68
pixel position of first part: (1132, 1004)
pixel position of second part: (1139, 1047)
number of parts: 68
pixel position of first part: (3657, 954)
pixel position of second part: (3659, 984)
number of parts: 68
pixel position of first part: (125, 2724)
pixel position of second part: (118, 2760)
number of parts: 68
pixel position of first part: (1576, 1755)
pixel position of second part: (1580, 1793)
number of parts: 68
pixel position of first part: (152, 1491)
pixel position of second part: (150, 1529)
number of parts: 68
pixel position of first part: (120, 873)
pixel position of second part: (127, 918)
number of parts: 68
pixel position of first part: (662, 982)
pixel position of second part: (663, 1022)
number of parts: 68
pixel position of first part: (3309, 1453)
pixel position of second part: (3308, 1478)
number of parts: 68
pixel position of first part: (723, 2587)
pixel position of second part: (723, 2636)
number of parts: 68
pixel position of first part: (1755, 914)
pixel position of second part: (1761, 959)
number of parts: 68
pixel position of first part: (119, 2073)
pixel position of second part: (119, 2111)
number of parts: 68
pixel position of first part: (768, 1735)
pixel position of second part: (767, 1799)
number of parts: 68
pixel position of first part: (719, 173)
pixel position of second part: (715, 196)
number of parts: 68
pixel position of first part: (1561, 2588)
pixel position of second part: (1563, 2631)
number of parts: 68
pixel position of first part: (1136, 348)
pixel position of second part: (1135, 381)
number of parts: 68
pixel position of first part: (2221, 2237)
pixel position of second part: (2221, 2279)
number of parts: 68
pixel position of first part: (654, 542)
pixel position of second part: (649, 568)
number of parts: 68
pixel position of first part: (3548, 2661)
pixel position of second part: (3554, 2719)
number of parts: 68
pixel position of first part: (2830, 340)
pixel position of second part: (2819, 436)
number of parts: 68
pixel position of first part: (1729, 287)
pixel position of second part: (1724, 333)
Hit enter to process the next image...
测试02:
processing image ..\..\..\examples\faces\dogs.jpg
Number of faces detected: 0
Hit enter to process the next image...
上一篇: php使用cookie存库浏览记录详解
下一篇: c语言-爱心代码的实现