欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Matplotlib之基本操作

程序员文章站 2022-04-07 13:59:01
下面完整代码在github仓库:传送门文章目录一、画散点图二、画3D图三、画各种直方图四、画动态图一、画散点图import matplotlib.pyplot as pltimport numpy as npplt.rcParams['figure.figsize'] = (10, 6) # 图像显示大小plt.rcParams['font.sans-serif'] = ['SimHei'] # 防止中文标签乱码,还有通过导入字体文件的方法plt.rcParams['lines.lin...

下面完整代码在github仓库:传送门


一、画散点图

import matplotlib.pyplot as plt
import numpy as np

plt.rcParams['figure.figsize'] = (10, 6) # 图像显示大小
plt.rcParams['font.sans-serif'] = ['SimHei']  # 防止中文标签乱码,还有通过导入字体文件的方法
plt.rcParams['lines.linewidth'] = 0.5  # 设置曲线线条宽度

# plt.scatter(x=[2, 5, 6], y=[4, 8, 3], marker="*", alpha=0.5)
# plt.show()

# num = np.array([[2, 5], [3, 6], [4, 5], [3, 7], [5, 9]])
# # plt.scatter(x=num, y=num, marker="*", alpha=0.5)
# plt.scatter(x=num[:, 0], y=num[:, 1], marker="*", alpha=0.5)
# plt.show()

x = np.random.rand(20)
y = np.random.rand(20)
x1 = np.random.rand(20)
y1 = np.random.rand(20)

# 绘制点
plt.scatter(x, y, c="r", marker="p", s=20, label="girl")
plt.scatter(x1, y1, c="b", marker="v", s=18, label="boy")
plt.legend()  # 显示图例
plt.title("标题")
plt.text(0.5, 0.4, "哈哈")
plt.xlabel("x")
plt.ylabel("y")
plt.show()

二、画3D图

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np

x = np.random.normal(0, 1, 100)
y = np.random.normal(0, 1, 100)
z = np.random.normal(0, 10, 100)

fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(x, y, z, c="green", marker="v", label="boy")
plt.legend()
plt.show()

三、画各种直方图

from matplotlib import pyplot as plt
import numpy as np

x = [5, 8, 10]
y = [12, 16, 6]
x2 = [6, 9, 11]
y2 = [6, 15, 7]
plt.bar(x, y)
plt.bar(x2, y2)
plt.title("Bar")
plt.ylabel('Y axis')
plt.xlabel('X axis')
plt.show()
from matplotlib import pyplot as plt
import numpy as np


u = 100  # 均值
sigma = 20  # 方差
# 2000个数据
x = u + sigma*np.random.randn(2000)
# x = np.random.randn(2000)
# 画图 bins:条形的个数, normed:是否标准化
plt.hist(x=x, bins=10, normed=True)
plt.show()
from matplotlib import pyplot as plt
import numpy as np

u = 100  # 均值
sigma = 20  # 方差
# 2000个数据
x = u + sigma*np.random.randn(2000)
# x = np.random.randn(2000)
# 画图 bins:条形的个数, normed:是否标准化
plt.hist(x=x, bins=10, normed=True)
plt.show()
import numpy as np
import matplotlib.pyplot as plt

x = np.random.rand(10000)
y = np.random.rand(10000)

plt.hist2d(x=x, y=y, bins=100)
plt.show()
import numpy as np
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
labels = ['娱乐', '育儿', '饮食', '房贷', '交通', '其它']
sizes = [2, 4, 12, 70, 2, 9]
explode = (0, 0, 0, 0.1, 0, 0)
plt.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%', shadow=False, startangle=150)
plt.title("饼图实例-8月份家庭支出")
plt.show()

四、画动态图

import matplotlib.pyplot as plt
import numpy as np


ax = []
ay = []
plt.ion()

for i in range(100):
    random = np.random.rand()
    ax.append(i)
    # ay.append(i**2)
    # ay.append(np.log(i**2))
    # ay.append(-np.log(i**2))
    ay.append(-np.log(i**2)*random)

    # plt.clf()
    plt.plot(ax, ay)  # 画折线图
    plt.scatter(ax,ay, c="r", marker="v")
    plt.pause(0.1)

plt.ioff()
plt.show()

本文地址:https://blog.csdn.net/liu1073811240/article/details/109922446

相关标签: Python matplotlib