欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python调用虹软2.0第三版的具体使用

程序员文章站 2022-04-06 08:20:59
这一版,对虹软的功能进行了一些封装,添加了人脸特征比对,比对结果保存到文件,和从文件提取特征进行比对,大体功能基本都已经实现,可以进行下一步的应用开发了 face_cla...

这一版,对虹软的功能进行了一些封装,添加了人脸特征比对,比对结果保存到文件,和从文件提取特征进行比对,大体功能基本都已经实现,可以进行下一步的应用开发了

face_class.py

from ctypes import *
#人脸框
class mrect(structure):
  _fields_=[(u'left1',c_int32),(u'top1',c_int32),(u'right1',c_int32),(u'bottom1',c_int32)]
#版本信息   版本号,构建日期,版权说明
class asf_version(structure):
  _fields_=[('version',c_char_p),('builddate',c_char_p),('copyright',c_char_p)]
#单人人脸信息 人脸狂,人脸角度
class asf_singlefaceinfo(structure):
  _fields_=[('facerect',mrect),('faceorient',c_int32)]
#多人人脸信息 人脸框数组,人脸角度数组,人脸数
class asf_multifaceinfo(structure):
  # _fields_=[('facerect',pointer(mrect)),('faceorient',pointer( c_int32)),('facenum',c_int32)]
  _fields_=[(u'facerect',pointer(mrect)),(u'faceorient',pointer(c_int32)),(u'facenum', c_int32)]
  # _fields_=[(u'facerect',mrect*50),(u'faceorient',c_int32*50),(u'facenum',c_int32)]
#人脸特征 人脸特征,人脸特征长度
class asf_facefeature(structure):
  _fields_=[('feature',c_void_p),('featuresize',c_int32)]
#自定义图片类
class im:
  def __init__(self):
    self.filepath=none
    self.date=none
    self.width=0
    self.height=0

face_dll.py

from ctypes import *
from face_class import *
wuyongdll=cdll('d:\python\test\face\lib\x64\libarcsoft_face.dll')
dll=cdll('d:\python\test\face\lib\x64\libarcsoft_face_engine.dll')
dllc=cdll.msvcrt
asf_detect_mode_video = 0x00000000
asf_detect_mode_image = 0xffffffff
c_ubyte_p = pointer(c_ubyte) 
#激活
jihuo=dll.asfactivation
jihuo.restype = c_int32
jihuo.argtypes = (c_char_p,c_char_p)
#初始化
chushihua=dll.asfinitengine
chushihua.restype=c_int32
chushihua.argtypes=(c_long,c_int32,c_int32,c_int32,c_int32,pointer(c_void_p))
#人脸识别
shibie=dll.asfdetectfaces
shibie.restype=c_int32
shibie.argtypes=(c_void_p,c_int32,c_int32,c_int32,pointer(c_ubyte),pointer(asf_multifaceinfo))
#特征提取
tezheng=dll.asffacefeatureextract
tezheng.restype=c_int32
tezheng.argtypes=(c_void_p,c_int32,c_int32,c_int32,pointer(c_ubyte),pointer(asf_singlefaceinfo),pointer(asf_facefeature))

#特征比对
bidui=dll.asffacefeaturecompare
bidui.restype=c_int32
bidui.argtypes=(c_void_p,pointer(asf_facefeature),pointer(asf_facefeature),pointer(c_float))
malloc = dllc.malloc
free = dllc.free
memcpy = dllc.memcpy

malloc.restype = c_void_p
malloc.argtypes = (c_size_t, )
free.restype = none
free.argtypes = (c_void_p, )
memcpy.restype = c_void_p
memcpy.argtypes = (c_void_p, c_void_p, c_size_t)

face_function.py

import face_dll,face_class
from ctypes import *
import cv2
from io import bytesio
# from main import *
handle=c_void_p()
c_ubyte_p = pointer(c_ubyte) 
# 激活函数
def jh(appkey,sdkey):
  ret=face_dll.jihuo(appkey,sdkey)
  return ret
# 初始化函数
def csh():# 1:视频或图片模式,2角度,3最小人脸尺寸推荐16,4最多人脸数最大50,5功能,6返回激活句柄
  ret=face_dll.chushihua(0xffffffff,0x1,16,50,5,byref(handle))
  # main.handle=handle
  return ret,handle
# cv2记载图片并处理
def loadimg(im):
  img=cv2.imread(im.filepath)
  sp=img.shape
  img=cv2.resize(img,(sp[1]//4*4,sp[0]//4*4))
  sp=img.shape
  im.data=img
  im.width=sp[1]
  im.height=sp[0]
  return im
def rlsb(im):
  faces=face_class.asf_multifaceinfo()
  img=im.data
  imgby=bytes(im.data)
  imgcuby=cast(imgby,c_ubyte_p)
  ret=face_dll.shibie(handle,im.width,im.height,0x201,imgcuby,byref(faces))
  return ret,faces
# 显示人脸识别图片
def showimg(im,faces):
  for i in range(0,faces.facenum):
    ra=faces.facerect[i]
    cv2.rectangle(im.data,(ra.left1,ra.top1),(ra.right1,ra.bottom1),(255,0,0,),2)
  cv2.imshow('faces',im.data)
  cv2.waitkey(0)
#提取人脸特征
def rltz(im,ft):
  detectedfaces=face_class.asf_facefeature()
  img=im.data
  imgby=bytes(im.data)
  imgcuby=cast(imgby,c_ubyte_p)
  ret=face_dll.tezheng(handle,im.width,im.height,0x201,imgcuby,ft,byref(detectedfaces))
  if ret==0:
    retz=face_class.asf_facefeature()
    retz.featuresize=detectedfaces.featuresize
    #必须操作内存来保留特征值,因为c++会在过程结束后自动释放内存
    retz.feature=face_dll.malloc(detectedfaces.featuresize)
    face_dll.memcpy(retz.feature,detectedfaces.feature,detectedfaces.featuresize)
    # print('提取特征成功:',detectedfaces.featuresize,mem)
    return ret,retz
  else:
    return ret
#特征值比对,返回比对结果
def bd(tz1,tz2):
  jg=c_float()
  ret=face_dll.bidui(handle,tz1,tz2,byref(jg))
  return ret,jg.value
#单人特征写入文件
def writeftfile(feature,filepath):
  f = bytesio(string_at(feature.feature,feature.featuresize))
  a=open(filepath,'wb')
  a.write(f.getvalue())
  a.close()
#从多人中提取单人数据
def getsingleface(singleface,index):
  ft=face_class.asf_singlefaceinfo()
  ra=singleface.facerect[index]
  ft.facerect.left1=ra.left1
  ft.facerect.right1=ra.right1
  ft.facerect.top1=ra.top1
  ft.facerect.bottom1=ra.bottom1
  ft.faceorient=singleface.faceorient[index]
  return ft
#从文件获取特征值
def ftfromfile(filepath):
  fas=face_class.asf_facefeature()
  f=open('d:/1.dat','rb')
  b=f.read()
  f.close()
  fas.featuresize=b.__len__()
  fas.feature=face_dll.malloc(fas.featuresize)
  face_dll.memcpy(fas.feature,b,fas.featuresize)
  return fas

main1.py

import face_dll,face_class
from ctypes import *
import cv2
import face_function as fun
appkey=b''
sdkey=b''
# 激活
ret=fun.jh(appkey,sdkey)
if ret==0 or ret==90114:
  print('激活成功:',ret)
else:
  print('激活失败:',ret)
  pass
# 初始化
ret=fun.csh()
if ret[0]==0:
  print('初始化成功:',ret,'句柄',fun.handle)
else:
  print('初始化失败:',ret)
# 加载图片
im=face_class.im()
im.filepath='e:/2.jpg'
im=fun.loadimg(im)
print(im.filepath,im.width,im.height)
# cv2.imshow('im',im.data)
# cv2.waitkey(0)
print('加载图片完成:',im)

ret=fun.rlsb(im)
if ret[0]==-1:
  print('人脸识别失败:',ret)
  pass
else:
  print('人脸识别成功:',ret)
# 显示人脸照片
# showimg(im,ret)
#提取单人1特征
ft=fun.getsingleface(ret[1],0)
tz1=fun.rltz(im,ft)[1]
#提取单人2特征
ft=fun.getsingleface(ret[1],1)
tz2=fun.rltz(im,ft)[1]
#特征保存到文件
# fun.writeftfile(tz1,'d:/1.dat')
# fun.writeftfile(tz2,'d:/2.dat')
#文件获取特征
tz=fun.ftfromfile('d:/1.dat')
jg=fun.bd(tz1,tz)
print(jg[1])
#结果比对
# jg=fun.bd(tz1,tz2)
# print(jg[1])

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。