欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python numpy库np.percentile用法说明

程序员文章站 2022-03-03 23:05:13
在python中计算一个多维数组的任意百分比分位数,此处的百分位是从小到大排列,只需用np.percentile即可……a = range(1,101)#求取a数列第90%分位的数值np.percen...

在python中计算一个多维数组的任意百分比分位数,此处的百分位是从小到大排列,只需用np.percentile即可……

a = range(1,101)
#求取a数列第90%分位的数值
np.percentile(a, 90)
out[5]: 90.10000000000001

a = range(101,1,-1)
#百分位是从小到大排列
np.percentile(a, 90)
out[7]: 91.10000000000001

详看官方文档

numpy.percentile
parameters
 ----------
 a : np数组
 q : float in range of [0,100] (or sequence of floats)
  percentile to compute。
  要计算的q分位数。
 axis : 那个轴上运算。
 keepdims :bool是否保持维度不变。

 examples
 --------
 >>> a = np.array([[10, 7, 4], [3, 2, 1]])
 >>> a
 array([[10, 7, 4],
   [ 3, 2, 1]])
 >>> np.percentile(a, 50) #50%的分位数,就是a里排序之后的中位数
 3.5
 >>> np.percentile(a, 50, axis=0) #axis为0,在纵列上求
 array([[ 6.5, 4.5, 2.5]])
 >>> np.percentile(a, 50, axis=1) #axis为1,在横行上求
 array([ 7., 2.])
 >>> np.percentile(a, 50, axis=1, keepdims=true) #keepdims=true保持维度不变
 array([[ 7.],
   [ 2.]])

补充知识:关于np.percentile函数的自己的理解(我觉得很对)

最近在跑别人baseline的时候看到np.percentile这个函数,之前没有用过,就跑去官方文档看了看到底是怎么工作的()

行吧,官方文档给出的例子居然是以50为例(我当然知道这是得到中位数啊!!!),但是自己在运行的时候一直不明白下面的结果为什么是5.8.

python numpy库np.percentile用法说明

后来自己琢磨了一下,函数得到的结果是得到一个数,列表中百分之60的数小于该数字。

图中的列表长度为9,。数字1所对应的是0%,数字9对应的是100%,中间有8个间隔。100/8=12.5.

参数为60,那么60/12.5=4.8,意味着需要4.8个间隔,好的,先跳过4个间隔,现在到达5这个位置,然后往后0.8个间隔,该间隔对应的长度为6-5=1,所以最后得出的结果为5+1*0.8=5.8,和函数输出的结果一样。

主要是自己爱较真,不想了解具体怎么算的话只要记住函数的统计意义就可以。

另外关于我的解释中为什么要用“间隔”这种描述,因为我写的例子中1-9,间隔相邻数字的差是一样的,但是在实际应用中可能不一样。

以上这篇python numpy库np.percentile用法说明就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。