欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python3 numpy中数组相乘np.dot(a,b)运算的规则说明

程序员文章站 2022-04-05 12:13:26
python np.dot(a,b)运算规则解析首先我们知道dot运算时不满足交换律的,np.dot(a, b)与np.dot(b, a)是不一样的另外np.dot(a,b)和a.dot(b)果是一样...

python np.dot(a,b)运算规则解析

首先我们知道dot运算时不满足交换律的,np.dot(a, b)与np.dot(b, a)是不一样的

另外np.dot(a,b)和a.dot(b)果是一样的

1.numpy中数组相乘np.dot(a,b)运算条件:

对于两数组a和b :

示例一:

a = np.array([[3], [3], [3]]) # (3,1)
b = np.array([2, 2, 1]) # (3,)
print(a, "\na的shape", a.shape)
print(b, "\nb的shape", b.shape)
c = b.dot(a)
print(c, "\nc的shape", c.shape)

输出:

 [3]
 [3]] 
a的shape (3, 1)
[2 2 1] 
b的shape (3,)
[15] 
c的shape (1,)

示例二:

a = np.array([[2,2,2,1],[3,3,3,1],[4,4,4,4]]) # shape=(3,4)
b = np.array([[1,1,1],[2,2,2],[3,3,3],[4,4,4]]) # shape=(4,3)

可以直接看他们的shape:a的shape为(3, 4)设为(m, n);b的shape为(4, 3)设为(x, y)

对于上面两个数组a,b:

np.dot(a,b)的运算条件为:n==x,如果a的shape变为(4, 3)则两则无法dot

简单来说规律就是:如果a.shape=(m,n),b.shape=(x,y)那么**np.dot(a,b)**的运算条件为:n=x (这一点用于在python理解和快速判断数组的shape是否用对了)

实际上数组运算的规律将两个数组画出来,是这样的:

python3 numpy中数组相乘np.dot(a,b)运算的规则说明

2.np.dot(a,b)运算之后的结果解析

规律:dot之后会将两组数组中相等的(符合dot条件的)维度消掉,得到剩下的维度组合成新的数组,如果剩下只有一个维度则为行(对应一维),列是无

对于a.shape=(m,n),b.shape=(x,y):

dot之后n和x会消掉,结果shape变成(m,y)

如果n为1(或者空),shape变为(y,)

e.g1:

a = np.array([1,1,1]) # shape=(3,)
b = np.array([[3],[3],[3]]) # shape=(3,1)
print(np.dot(a,b))
print("dot之后的shape为:", np.dot(a,b).shape)

那么,3和3消掉,剩下只有一个数1,对应1行没有列==>(1,)

运算结果:

[9]
dot之后的shape为:(1,)

e.g2:

a.shape=(4,1) 
b.shape=(1,4)

那么( 1和1消掉,剩下(4,4) )

np.dot(a,b)的shape为(4,4)

补充:python3中的列表、数组和矩阵及*、np.dot和np.multiply解析

今天用python进行数据处理的时候,突然发现自己搞不清python中的列表和数组有啥区别及其运算规则,总是得不到自己想要的结果。于是就开始在网上找相关资料,发现很多资料讲的都十分片面,下面自己总结的各个资料,给大家进行详细的解释:

1.列表、数组和矩阵

列表是python中最基本的数据结构,列表中可以存储数字、字符串等,因此python可以通过列表存储数组;

数组是python扩展库numpy中的一种数据结构ndarray;

矩阵是同样是python扩展库numpy中的一种数据结构mat;

那么既然存在列表,为什么我们不直接使用python中的列表,而使用numpy呢?原因显然意见,python中列表的存储效率和输入输出性能远不及numpy中的数组和矩阵,但是由于列表中可以存储任意元素,因此列表的通用性方面要比数组和矩阵强。总之列表与数组、矩阵各有各的优势,要视使用场合选择合适的数据结构。

同样numpy中的数组和矩阵也是有区别的:

numpy中的矩阵必须是2维的,而numpy中数组可以是多维的,因此矩阵是数组的一个特例,所以在numpy中的矩阵继承着数组的所有特性;

同时我们常常需要查看列表、数组和矩阵的属性,如size、shape、len

其中len():返回对象的长度,可以作用于列表、数组和矩阵:len(list([1,2,3]))

size()和shape()是numpy扩展库中才用的函数:

size():计算所有数据的个数,同样可以作用于列表、数组和矩阵:np.size(np.array([1,2,3]))

shape():得到数据每维的大小,同样可以作用于列表、数组和矩阵:np.shape(np.array([1,2,3]))

不同于len,shape和size还可以作为数组和矩阵的属性(列表不行),使用方法如下:a.shape、a.size

2.python中的星号(*)、np.multiply()、np.dot()

1.星号(*):

对数组执行对应位置相乘;对矩阵执行矩阵乘法运算

2.np.multiply()

不管对矩阵还是数组都是执行对应位置相乘

3.np.dot()

对秩为1的数组:对应位置相乘并求和

对秩不为1的数组:矩阵乘法运算

对矩阵:矩阵乘法运算

上面是对列表、数组、矩阵以及python中各种乘法的总结,果然总结对自己理解问题有很大的帮助,现在自己自己很清楚它们的用法了,希望这篇博客也可以帮助大家~

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。如有错误或未考虑完全的地方,望不吝赐教。