欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  数据库

mysql索引详解(总结)

程序员文章站 2022-04-05 10:50:35
...

mysql索引详解(总结)

上文《关于 mysql 执行流程的解析》中我们主要介绍了sql语句在server层的执行过程

我们再来分析一下具体的语句在引擎层的执行步骤,CRUD的操作都跟索引相关,我们先了解一下索引

索引

索引的出现其实就是为了提高数据查询的效率,就像书的目录

数据结构

常见的数据结构有 哈希表、有序数组和搜索树

哈希表是一种以键 - 值(key-value)存储数据的结构,我们只要输入待查找的值即 key, 就可以找到其对应的值即 Value。哈希的思路很简单,把值放在数组里,用一个哈希函数 把 key 换算成一个位置,然后把 value 放在数组的对应位置

不可避免地,多个 key 值经过哈希函数的换算,会出现同一个值的情况。处理这种情况的 一种方法是,拉出一个链表

哈希表这种结构适用于只有等值查询的场景

有序数组在等值查询和范围查询场景中的性能就都非常优秀

如果仅仅看查询效率,有序数组就很好。但是,在需要更新数据的时候就 麻烦了,你往中间插入一个记录就必须得挪动后面所有的记录,成本太高

有序数组索引只适用于静态存储引擎

二叉搜索树的特点是:每个节点的左儿子小于父节点,父节点又小于右儿子

当然为了维持 O(log(N)) 的查询复杂度,你就需要保持这棵树是平衡二叉树。为了做这个 保证,更新的时间复杂度也是 O(log(N))

二叉树是搜索效率最高的,但是实际上大多数的数据库存储却并不使用二叉树。 其原因是,索引不止存在内存中,还要写到磁盘上

为了让一个查询尽量少地读磁盘,就必须让查询过程访问尽量少的数据块。那么,我们就不应该使用二叉树,而是要使用“N 叉”树。这里,“N 叉”树中的“N”取决于数据块的大小

N 叉树由于在读写上的性能优点,以及适配磁盘的访问模式,已经被广泛应用在数据库引擎中了

InnoDB 的索引模型

在 InnoDB 中,表都是根据主键顺序以索引的形式存放的,这种存储方式的表称为索引组织表。 InnoDB 使用了 B+ 树索引模型,所以数据都是存储在 B+ 树中的

每一个索引在 InnoDB 里面对应一棵 B+ 树

根据叶子节点的内容,索引类型分为主键索引和非主键索引

主键索引的叶子节点存的是整行数据。在 InnoDB 里,主键索引也被称为聚簇索引

非主键索引的叶子节点内容是主键的值。在 InnoDB 里,非主键索引也被称为二级索引

基于非主键索引的查询需要多扫描一棵索引树(回表)。因此,我们在应用中应该尽量 使用主键查询

索引维护

B+ 树为了维护索引有序性,在插入新值的时候需要做必要的维护

如果新插入的 ID 值比原来的小,就相对麻烦了,需要逻辑上挪动后面的数据,空出位置

而更糟的情况是,如果所在的数据页已经满了,根据 B+ 树的算法,这时候需要申请 一个新的数据页,然后挪动部分数据过去。这个过程称为页分裂。在这种情况下,性能自然会受影响。

除了性能外,页分裂操作还影响数据页的利用率。原本放在一个页的数据,现在分到两个页中,整体空间利用率降低大约 50%。

当然有分裂就有合并。当相邻两个页由于删除了数据,利用率很低之后,会将数据页做合 并。合并的过程,可以认为是分裂过程的逆过程

自增主键的插入数据模式,正符合了我们前面提到的递增插入的场景。每次插 入一条新记录,都是追加操作,都不涉及到挪动其他记录,也不会触发叶子节点的分裂。

而有业务逻辑的字段做主键,则往往不容易保证有序插入,这样写数据成本相对较高

主键长度越小,普通索引的叶子节点就越小,普通索引占用的空间也就越小

所以,从性能和存储空间方面考量,自增主键往往是更合理的选择

有没有什么场景适合用业务字段直接做主键的呢?还是有的。比如,有些业务的场景需求 是这样的:

1.只有一个索引;

2.该索引必须是唯一索引。

这就是典型的 KV 场景

覆盖索引

如果执行的语句是 select ID from t ,这时只需要查 ID 的 值,而 ID 的值已经在 k 索引树上了,因此可以直接提供查询结果,不需要回表。也就是说,在这个查询里面,索引 k 已经“覆盖了”我们的查询需求,我们称为覆盖索引

由于覆盖索引可以减少树的搜索次数,显著提升查询性能,所以使用覆盖索引是一个常用的性能优化手段

索引下推

满足最左前缀原则的时候,最左前缀可以用于在索引中定位记录。这时,你可能要问,那些不符合最左前缀的部分,会怎么样呢?

MySQL 5.6 引入的索引下推优化, 可以在索引遍历过 程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数

最左前缀原则

不只是索引的全部定义,只要满足最左前缀,就可以利用索引来加速检索

在建立联合索引的时候,如何安排索引内的字段顺序?

这里我们的评估标准是,索引的复用能力。因为可以支持最左前缀,所以当已经有了 (a,b) 这个联合索引后,一般就不需要单独在 a 上建立索引了。因此,第一原则是,如果通过调整顺序,可以少维护一个索引,那么这个顺序往往就是需要优先考虑采用的

前缀索引

利用最左前缀原则可以定义字符串的一部分作为索引。默认地,如果你创建索引的语句不指定前缀长度,那么索引就会包含整个字符串

但,这同时带来的损失是,可能会增加额外的记录扫描次数,因为索引相同需要进一步比较

使用前缀索引,定义好长度,就可以做到既节省空间,又不用额外增加太多的查 询成本

可以通过统计索引上有多少个不同的值来判断要使用多长的前缀,从而减少扫描次数

前缀索引对覆盖索引的影响

使用前缀索引就用不上覆盖索引对查询性能的优化了,这也是你在选择是否使用前缀索引时需要考虑的一个因素

倒序存储和hash存储

对于类似于邮箱这样的字段来说,使用前缀索引的效果可能还不错。但是,遇到前缀的区 分度不够好的情况时,我们要怎么办呢?

第一种方式是使用倒序存储。如果你存储身份证号的时候把它倒过来存

第二种方式是使用 hash 字段。你可以在表上再创建一个整数字段,来保存身份证的校验码,同时在这个字段上创建索引

免费学习视频教程推荐:mysql视频教程

以上就是mysql索引详解(总结)的详细内容,更多请关注其它相关文章!

相关标签: mysql