欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

MXNet/Gluon 中 Triplet Loss 算法

程序员文章站 2022-04-05 09:58:54
...

Triplet Loss,即三元组损失,用于训练差异性较小的数据集,数据集中标签较多,标签的样本较少。输入数据包括锚(Anchor)示例⚓️、正(Positive)示例负(Negative)示例,通过优化模型,使得锚示例与正示例的距离小于锚示例与负示例的距离,实现样本的相似性计算。其中锚示例是样本集中随机选取的一个样本,正示例与锚示例属于同一类的样本,而负示例与锚示例属于不同类的样本。

MXNet/Gluon 中 Triplet Loss 算法

在训练Triplet Loss模型时,只需要输入样本,不需要输入标签,这样避免标签过多、同标签样本过少的问题,模型只关心样本编码,不关心样本类别。Triplet Loss在相似性计算和检索中的效果较好,可以学习到样本与变换样本之间的关联,检索出与当前样本最相似的其他样本。

Triplet Loss通常应用于个体级别的细粒度识别,比如分类猫与狗等是大类别的识别,但是有些需求要精确至个体级别,比如识别不同种类不同配色的猫等,所以Triplet Loss最主要的应用也是在细粒度检索领域中。

Triplet Loss的对比:

  • 如果把不同个体作为类别进行分类训练,Softmax维度可能远大于Feature维度,精度无法保证。
  • Triplet Loss一般比分类能学习到更好的特征,在度量样本距离时,效果较好;
  • Triplet Loss支持调整阈值Margin,控制正负样本的距离,当特征归一化之后,通过调节阈值提升置信度。

Triplet Loss的公式

in[  f(xia)f(xip) 22 f(xia)f(xin) 22+α ]+

其他请参考Triplet Loss算法的论文

本文使用MXNet/Gluon深度学习框架,数据集选用MNIST,实现Triplet Loss算法。

本文的源码https://github.com/SpikeKing/triplet-loss-gluon


数据集

安装MXNet库:

pip install mxnet

推荐豆瓣源下载,速度较快,-i https://pypi.douban.com/simple

MNIST就是著名的手写数字识别库,其中包含0至9等10个数字的手写体,图片大小为28*28的灰度图,目标是根据图片识别正确的数字。

使用MNIST类加载数据集,获取训练集mnist_train和测试集mnist_test的数据和标签。

mnist_train = MNIST(train=True)  # 加载训练
tr_data = mnist_train._data.reshape((-1, 28 * 28))  # 数据
tr_label = mnist_train._label  # 标签

mnist_test = MNIST(train=False)  # 加载测试
te_data = mnist_test._data.reshape((-1, 28 * 28))  # 数据
te_label = mnist_test._label  # 标签

Triplet Loss训练的一个关键步骤就是准备训练数据。本例继承Dataset类创建Triplet的数据集类TripletDataset

  1. 在构造器中:
    • 传入原始数据rd、原始标签rl;
    • _data_label是标准的数据和标签变量;
    • _transform是标准的转换变量;
    • 调用_get_data(),完成_data_label的赋值;
  2. __getitem__是数据处理接口,根据索引idx返回数据,支持调用_transform执行数据转换;
  3. __len__是数据的总数;
  4. _get_data()是数据赋值的核心方法:
    • 分离索引,获取标签相同数据的索引值Index列表digit_indices
    • 创建三元组,即锚示例、正示例和负示例的索引组合矩阵;
    • 数据是三元组,标签是ones矩阵,因为标签在Triplet Loss中没有实际意义;

具体实现:

class TripletDataset(dataset.Dataset):
    def __init__(self, rd, rl, transform=None):
        self.__rd = rd  # 原始数据
        self.__rl = rl  # 原始标签
        self._data = None
        self._label = None
        self._transform = transform
        self._get_data()

    def __getitem__(self, idx):
        if self._transform is not None:
            return self._transform(self._data[idx], self._label[idx])
        return self._data[idx], self._label[idx]

    def __len__(self):
        return len(self._label)

    def _get_data(self):
        label_list = np.unique(self.__rl)
        digit_indices = [np.where(self.__rl == i)[0] for i in label_list]
        tl_pairs = create_pairs(self.__rd, digit_indices, len(label_list))
        self._data = tl_pairs
        self._label = mx.nd.ones(tl_pairs.shape[0])

create_pairs()是创建三元组的核心逻辑:

  1. 确定不同标签的选择样本数,选择最少的标签样本数;
  2. 将标签d的索引值随机洗牌(Shuffle),选择样本i和i+1作为锚和正示例;
  3. 随机选择(Randrange)其他标签dn中的样本i作为负示例;
  4. 循环全部标签和全部样本,生成含有锚、正、负示例的随机组合。

这样所创建的组合矩阵,保证样本的分布均匀,既避免组合过大(对比于全排列),又引入足够的随机性(双重随机)。注意:由于滑动窗口为2,即i和i+1,则19个样本生成18个样本组。

具体实现,如下:

@staticmethod
def create_pairs(x, digit_indices, num_classes):
    x = x.asnumpy()  # 转换数据格式
    pairs = []
    n = min([len(digit_indices[d]) for d in range(num_classes)]) - 1  # 最小类别数
    for d in range(num_classes):
        for i in range(n):
            np.random.shuffle(digit_indices[d])
            z1, z2 = digit_indices[d][i], digit_indices[d][i + 1]
            inc = random.randrange(1, num_classes)
            dn = (d + inc) % num_classes
            z3 = digit_indices[dn][i]
            pairs += [[x[z1], x[z2], x[z3]]]
    return np.asarray(pairs))

使用DataLoader将TripletDataset封装为迭代器train_datatest_data,支持按批次batch输出样本。train_data用于训练网络,test_data用于验证网络。

def transform(data_, label_):
    return data_.astype(np.float32) / 255., label_.astype(np.float32)

train_data = DataLoader(
    TripletDataset(rd=tr_data, rl=tr_label, transform=transform),
    batch_size, shuffle=True)

test_data = DataLoader(
    TripletDataset(rd=te_data, rl=te_label, transform=transform),
    batch_size, shuffle=True)

网络和训练

Triplet Loss的基础网络,选用非常简单的多层感知机,主要为了验证Triplet Loss的效果。

base_net = Sequential()
with base_net.name_scope():
    base_net.add(Dense(256, activation='relu'))
    base_net.add(Dense(128, activation='relu'))

base_net.collect_params().initialize(mx.init.Uniform(scale=0.1), ctx=ctx)

初始化参数,使用uniform均匀分布,范围是[-0.1, 0.1],效果类似如下:

MXNet/Gluon 中 Triplet Loss 算法

Gluon中自带TripletLoss损失函数,非常赞,产学结合的非常好!初始化损失函数triplet_loss和训练器trainer_triplet

triplet_loss = gluon.loss.TripletLoss()  # TripletLoss损失函数
trainer_triplet = gluon.Trainer(base_net.collect_params(), 'sgd', {'learning_rate': 0.05})

Triplet Loss的训练过程:

  1. 循环执行epoch,共10轮;
  2. train_data迭代输出每个批次的训练数据data;
  3. 指定训练的执行环境as_in_context(),MXNet的数据环境就是训练环境;
  4. 数据来源于TripletDataset,可以直接分为三个示例;
  5. 三个示例共享模型base_net,计算triplet_loss的损失函数;
  6. 调用loss.backward(),反向传播求导;
  7. 设置训练器trainer_triplet的step是batch_size
  8. 计算损失函数的均值curr_loss
  9. 使用测试数据test_data评估网络base_net

具体实现:

for epoch in range(10):
    curr_loss = 0.0
    for i, (data, _) in enumerate(train_data):
        data = data.as_in_context(ctx)
        anc_ins, pos_ins, neg_ins = data[:, 0], data[:, 1], data[:, 2]
        with autograd.record():
            inter1 = base_net(anc_ins)
            inter2 = base_net(pos_ins)
            inter3 = base_net(neg_ins)
            loss = triplet_loss(inter1, inter2, inter3)  # Triplet Loss
        loss.backward()
        trainer_triplet.step(batch_size)
        curr_loss = mx.nd.mean(loss).asscalar()
        # print('Epoch: %s, Batch: %s, Triplet Loss: %s' % (epoch, i, curr_loss))
    print('Epoch: %s, Triplet Loss: %s' % (epoch, curr_loss))
    evaluate_net(base_net, test_data, ctx=ctx)  # 评估网络

评估网络也是一个重要的过程,验证网络的泛化能力:

  1. 设置triplet_loss损失函数,margin设置为0;
  2. test_data迭代输出每个批次的验证数据data;
  3. 指定验证数据的环境,需要与训练一致,因为是在训练的过程中验证;
  4. 通过模型,预测三元数据,计算损失函数;
  5. 由于TripletLoss的margin是0,因此只有0才是预测正确,其余全部预测错误;
  6. 统计整体的样本总数和正确样本数,计算全部测试数据的正确率;

具体实现:

def evaluate_net(model, test_data, ctx):
    triplet_loss = gluon.loss.TripletLoss(margin=0)
    sum_correct = 0
    sum_all = 0
    rate = 0.0
    for i, (data, _) in enumerate(test_data):
        data = data.as_in_context(ctx)

        anc_ins, pos_ins, neg_ins = data[:, 0], data[:, 1], data[:, 2]
        inter1 = model(anc_ins)  # 训练的时候组合
        inter2 = model(pos_ins)
        inter3 = model(neg_ins)
        loss = triplet_loss(inter1, inter2, inter3)  

        loss = loss.asnumpy()
        n_all = loss.shape[0]
        n_correct = np.sum(np.where(loss == 0, 1, 0))

        sum_correct += n_correct
        sum_all += n_all
        rate = safe_div(sum_correct, sum_all)

    print('准确率: %.4f (%s / %s)' % (rate, sum_correct, sum_all))
    return rate

在实验输出的效果中,Loss值逐渐减少,验证准确率逐步上升,模型收敛效果较好。具体如下:

Epoch: 0, Triplet Loss: 0.26367417
准确率: 0.9052 (8065 / 8910)
Epoch: 1, Triplet Loss: 0.18126598
准确率: 0.9297 (8284 / 8910)
Epoch: 2, Triplet Loss: 0.15365836
准确率: 0.9391 (8367 / 8910)
Epoch: 3, Triplet Loss: 0.13773362
准确率: 0.9448 (8418 / 8910)
Epoch: 4, Triplet Loss: 0.12188278
准确率: 0.9495 (8460 / 8910)
Epoch: 5, Triplet Loss: 0.115614936
准确率: 0.9520 (8482 / 8910)
Epoch: 6, Triplet Loss: 0.10390957
准确率: 0.9544 (8504 / 8910)
Epoch: 7, Triplet Loss: 0.087059245
准确率: 0.9569 (8526 / 8910)
Epoch: 8, Triplet Loss: 0.10168926
准确率: 0.9588 (8543 / 8910)
Epoch: 9, Triplet Loss: 0.06260935
准确率: 0.9606 (8559 / 8910)

可视化

Triplet Loss的核心功能就是将数据编码为具有可区分性的特征。使用PCA降维,将样本特征转换为可视化的二维分布,通过观察可知,样本特征具有一定的区分性。效果如下:

MXNet/Gluon 中 Triplet Loss 算法

而原始的数据分布,效果较差:

MXNet/Gluon 中 Triplet Loss 算法

在训练结束时,执行可视化数据:

  • 原始的数据和标签
  • Triplet Loss网络输出的数据和标签

具体实现:

te_data, te_label = transform(te_data, te_label)
tb_projector(te_data, te_label, os.path.join(ROOT_DIR, 'logs', 'origin'))
te_res = base_net(te_data)
tb_projector(te_res.asnumpy(), te_label, os.path.join(ROOT_DIR, 'logs', 'triplet'))

可视化工具以tensorboard为基础,通过嵌入向量的可视化接口实现数据分布的可视化。在tb_projector()方法中,输入数据、标签和路径,即可生成可视化的数据格式。

具体实现:

def tb_projector(X_test, y_test, log_dir):
    metadata = os.path.join(log_dir, 'metadata.tsv')
    images = tf.Variable(X_test)
    with open(metadata, 'w') as metadata_file: # 把标签写入metadata
        for row in y_test:
            metadata_file.write('%d\n' % row)
    with tf.Session() as sess:
        saver = tf.train.Saver([images])  # 把数据存储为矩阵
        sess.run(images.initializer)  # 图像初始化
        saver.save(sess, os.path.join(log_dir, 'images.ckpt'))  # 图像存储
        config = projector.ProjectorConfig()  # 配置
        embedding = config.embeddings.add()  # 嵌入向量添加
        embedding.tensor_name = images.name  # Tensor名称
        embedding.metadata_path = metadata  # Metadata的路径
        projector.visualize_embeddings(tf.summary.FileWriter(log_dir), config)  # 可视化嵌入向量

TensorBoard在可视化方面的功能较多,一些其他框架也是使用TensorBoard进行数据可视化,如tensorboard-pytorch等,可视化为深度学习理论提供验证。

TensorBoard需要额外安装TensorFlow:

pip install tensorflow

Triplet Loss在数据编码领域中,有着重要的作用,算法也非常巧妙,适合相似性推荐等需求,是重要的工业界需求之一,如推荐菜谱、推荐音乐、推荐视频等。Triplet Loss模型可以学习到数据集中不同样本的相似性。除了传统的Triplet Loss损失计算方法,还有一些有趣的优化,如Lossless Triplet Loss等。

OK, that’s all! Enjoy it!