mxnet基础到提高(37)-自定义前向操作
程序员文章站
2022-04-05 09:46:23
...
from mxnet import nd
from mxnet.gluon import nn
class MixMLP(nn.Block):
def __init__(self, **kwargs):
# Run `nn.Block`'s init method
super(MixMLP, self).__init__(**kwargs)
self.blk = nn.Sequential()
def forward(self, x):
y = nd.relu(self.blk(x))
return y
net = MixMLP()
net.initialize()
x=nd.array([[-10,20],[20,-30]])
y=net(x)
print(y)
[[ 0. 20.]
[20. 0.]]
<NDArray 2x2 @cpu(0)>
下面计算 向量的模长
from mxnet import nd
from mxnet.gluon import nn
#code:liuxing
class computeNorm(nn.Block):
def __init__(self, **kwargs):
# Run `nn.Block`'s init method
super(computeNorm, self).__init__(**kwargs)
self.blk = nn.Sequential()
def forward(self, x):
y = nd.sqrt(nd.sum(nd.power(x,2),axis=1))
return y
net = computeNorm()
net.initialize()
x=nd.array([[-10,20],[20,-30]])
y=net(x)
print(y)
x=nd.array([[-10,20,6],[20,-30,9]])
y=net(x)
print(y)
[22.36068 36.05551]
<NDArray 2 @cpu(0)>
[23.151674 37.161808]
<NDArray 2 @cpu(0)>
上一篇: php问号乱码怎么办?
下一篇: ci和thinkphp5哪个好