欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python中csv文件的若干读写方法

程序员文章站 2022-04-04 21:17:55
python中csv文件的若干读写方法 //用普通文本文件方式打开和操作 with open("csvfilepath.csv") as cf:...

python中csv文件的若干读写方法

//用普通文本文件方式打开和操作

with open("csvfilepath.csv") as cf:
        lines=cf.readlines()
        ......

//用普通文本方式打开,用csv模块操作

import csv
with open("csvfilepath.csv") as cf:
        lines=csv.reader(cf)
        for line in lines:
                print(line)
        ......
import csv
headers=['id','username','password','age','country']
rows=[(1001,'qiye','qiye_pass',20,'china'),(1002,'mary','mary_pass',23,'usa')]
f=open("csvfile.csv",'a+')
wf =csv.writer(f)
wf.writerow(headers)
wf.writerow(rows)
f.close()

csv模块相关方法和属性
csv.writer(fileobj [, dialect=’excel’][optional keyword args])返回DictWriter类
csv.reader(iterable [, dialect=’excel’][,optional keyword args])返回DictRead类
csv.writer(csvfile.csv).writerow(rowdict)
csv.DictWriter.writerow()
csv.DictWriter.writeheader()
csv.DictWriter.writerows()
csv.writer(csvfile.csv).writerow(rowdicts)
csv.reader(csvfile.csv).next()
csv.DictReader.next()
csv.field_size_limit()
csv.get_dialect()
csv.list_dialects()
csv.reduce(funtion,sequence)
csv.register_dialect()
csv.re 类
csv.DictWriter类
csv.DictReader类

//用pandas模块打开和操作

import pandas as pd
csvpd=pd.read_excel(filepath)
......
csvpd.to_csv(filepath)#csvpd为pandas.DataFrame类

第三方pandas模块的常用方法属性
df:任意的Pandas DataFrame对象
s:任意的Pandas Series对象
同时我们需要做如下的引入:
import pandas as pd
import numpy as np
导入数据
pd.read_csv(filename):从CSV文件导入数据
pd.read_table(filename):从限定分隔符的文本文件导入数据
pd.read_excel(filename):从Excel文件导入数据
pd.read_sql(query, connection_object):从SQL表/库导入数据
pd.read_json(json_string):从JSON格式的字符串导入数据
pd.read_html(url):解析URL、字符串或者HTML文件,抽取其中的tables表格
pd.read_clipboard():从你的粘贴板获取内容,并传给read_table()
pd.DataFrame(dict):从字典对象导入数据,Key是列名,Value是数据
导出数据
df.to_csv(filename):导出数据到CSV文件
df.to_excel(filename):导出数据到Excel文件
df.to_sql(table_name, connection_object):导出数据到SQL表
df.to_json(filename):以Json格式导出数据到文本文件
创建测试对象
pd.DataFrame(np.random.rand(20,5)):创建20行5列的随机数组成的DataFrame对象
pd.Series(my_list):从可迭代对象my_list创建一个Series对象
df.index = pd.date_range(‘1900/1/30’, periods=df.shape[0]):增加一个日期索引
查看、检查数据
df.head(n):查看DataFrame对象的前n行
df.tail(n):查看DataFrame对象的最后n行
df.shape():查看行数和列数
df.info():查看索引、数据类型和内存信息
df.describe():查看数值型列的汇总统计
s.value_counts(dropna=False):查看Series对象的唯一值和计数
df.apply(pd.Series.value_counts):查看DataFrame对象中每一列的唯一值和计数
数据选取
df[col]:根据列名,并以Series的形式返回列
df[[col1, col2]]:以DataFrame形式返回多列
s.iloc[0]:按位置选取数据
s.loc[‘index_one’]:按索引选取数据
df.iloc[0,:]:返回第一行
df.iloc[0,0]:返回第一列的第一个元素
数据清理
df.columns = [‘a’,’b’,’c’]:重命名列名
pd.isnull():检查DataFrame对象中的空值,并返回一个Boolean数组
pd.notnull():检查DataFrame对象中的非空值,并返回一个Boolean数组
df.dropna():删除所有包含空值的行
df.dropna(axis=1):删除所有包含空值的列
df.dropna(axis=1,thresh=n):删除所有小于n个非空值的行
df.fillna(x):用x替换DataFrame对象中所有的空值
s.astype(float):将Series中的数据类型更改为float类型
s.replace(1,’one’):用‘one’代替所有等于1的值
s.replace([1,3],[‘one’,’three’]):用’one’代替1,用’three’代替3
df.rename(columns=lambda x: x + 1):批量更改列名
df.rename(columns={‘old_name’: ‘new_ name’}):选择性更改列名
df.set_index(‘column_one’):更改索引列
df.rename(index=lambda x: x + 1):批量重命名索引
数据处理:Filter 、Sort 和 GroupBy
df[df[col] > 0.5]:选择col列的值大于0.5的行
df.sort_values(col1):按照列col1排序数据,默认升序排列
df.sort_values(col2, ascending=False):按照列col1降序排列数据
df.sort_values([col1,col2], ascending=[True,False]):先按列col1升序排列,后按col2降序排列数据
df.groupby(col):返回一个按列col进行分组的Groupby对象
df.groupby([col1,col2]):返回一个按多列进行分组的Groupby对象
df.groupby(col1)[col2]:返回按列col1进行分组后,列col2的均值
df.pivot_table(index=col1, values=[col2,col3], aggfunc=max):创建一个按列col1进行分组,并计算col2和col3的最大值的数据透视表
df.groupby(col1).agg(np.mean):返回按列col1分组的所有列的均值
data.apply(np.mean):对DataFrame中的每一列应用函数np.mean
data.apply(np.max,axis=1):对DataFrame中的每一行应用函数np.max
数据合并
df1.append(df2):将df2中的行添加到df1的尾部
df.concat([df1, df2],axis=1):将df2中的列添加到df1的尾部
df1.join(df2,on=col1,how=’inner’):对df1的列和df2的列执行SQL形式的join
数据统计
df.describe():查看数据值列的汇总统计
df.mean():返回所有列的均值
df.corr():返回列与列之间的相关系数
df.count():返回每一列中的非空值的个数
df.max():返回每一列的最大值
df.min():返回每一列的最小值
df.median():返回每一列的中位数
df.std():返回每一列的标准差