Folyd + 路径存储
程序员文章站
2022-04-04 16:40:09
一、Folyd 算法原理 dist[i][j] = k 表示,从 I -- J 点的路径权值为 K 记录路径,就是将 C 点连接在 B A C 这样的路径后 二、简单容易理解版 核心代码: 1 //邻接矩阵保存点信息 2 int mapp[MAX_POINT][MAX_POINT]; 3 //保存任 ......
一、Folyd 算法原理
- 如果 AB + AC < BC 那么, BC最短路就要经过 A。 在算法进行过程中,应该是 ,B-A 有很多路径,B 代表这些路径权值之和,A-C也有很多路径,C是这些权值之和。那么我们找到一个 满足 AB + AC < BC 的时候更新权值数组,并且记录路径。
-
dist[i][j] = k 表示,从 I -- J 点的路径权值为 K
-
记录路径,就是将 C 点连接在 B A C 这样的路径后
二、简单容易理解版
核心代码:
1 //邻接矩阵保存点信息 2 int mapp[MAX_POINT][MAX_POINT]; 3 //保存任意两点之间的最短路径上的节点 4 vector<int> trace_path[MAX_POINT][MAX_POINT]; 5 6 void Folyd(int n) { 7 for (int k = 0; k < n; k++) 8 for (int i = 0; i < n; i++) 9 for (int j = 0; j < n; j++) 10 if (mapp[i][j] > mapp[i][k] + mapp[k][j]) { 11 mapp[i][j] = mapp[i][k] + mapp[k][j]; 12 trace_path[i][j].clear(); 13 //放入 i---k 路径节点 14 for (int z = 0; z < trace_path[i][k].size(); z++) 15 trace_path[i][j].push_back(trace_path[i][k][z]); 16 //放入 k---j 路径节点 17 for (int z = 0; z < trace_path[k][j].size(); z++) 18 trace_path[i][j].push_back(trace_path[k][j][z]); 19 } 20 } 21 22 void query(int from, int to) { 23 cout << "from " << from << " to " << to << " should cost " << mapp[from][to] <<"."<< endl; 24 cout << "trace_path: " ; 25 for (int i = 0; i < trace_path[from][to].size(); i++) 26 cout<< trace_path[from][to][i] << " -> "; 27 cout << to << endl; 28 }
上述代码中:存在重复存储,效率极低
1 trace_path[i][j].clear(); 2 //放入 i---k 路径节点 3 for (int z = 0; z < trace_path[i][k].size(); z++) 4 trace_path[i][j].push_back(trace_path[i][k][z]); 5 //放入 k---j 路径节点 6 for (int z = 0; z < trace_path[k][j].size(); z++) 7 trace_path[i][j].push_back(trace_path[k][j][z]);
优化代码:
由于上面代码每次都重复把点的信息都保存下来,因此,我们采用保存前驱几点的方式,最终通过回溯构建路径。
path[i][j] = k ; //表示 从 i---j 路径中, k 是 j 的直接前驱, 那么最短路径 1->5->4->3->6 有 paht[1][6] = 3; paht[1][3]= 4; paht[1][4] = 5; paht[1][5] =1 如此逆推不难得到 最短路径记录值
核心代码:
1 //邻接矩阵保存点信息 2 int mapp[MAX_POINT][MAX_POINT]; 3 //path[i][j] = k ,表示从 i 到 j 最短路, k 邻接到j。 4 int path[MAX_POINT][MAX_POINT]; 5 void Folyd(int n) { 6 //初始化路径数组 7 for (int i = 0; i < n; i++) 8 for (int j = 0; j < n; j++) { 9 if (mapp[i][j] - INF) 10 path[i][j] = i; 11 else 12 path[i][j] = NOTEXISTS; 13 } 14 15 for (int k = 0; k < n; k++) 16 for (int i = 0; i < n; i++) 17 for (int j = 0; j < n; j++) 18 if (mapp[i][j] > mapp[i][k] + mapp[k][j]) { 19 mapp[i][j] = mapp[i][k] + mapp[k][j]; 20 //path[i][j] = k; //这种思路中,不能写成这样 21 path[i][j] = path[k][j]; 22 } 23 } 24 25 void print_path(int from, int to) { 26 if (path[from][to] != from) 27 print_path(from, path[from][to]); 28 cout << " -> " << to; 29 }
在更改权值的时候,即使记录下来当前点的前驱节点。 path[i][j] = path[k][j]; 切不可以写成,path[i][j] = k; 后者是另一种思路,下面会描述。path[i][j] = path[k][j] 达到 j 节点 的前驱节点修改为经过k到j的路径上去。
完整代码:
测试数据:
1 8 2 0 5 2 3 0 3 4 4 0 4 1 5 1 5 8 6 1 3 3 7 2 4 6 8 2 6 3 9 1 7 2 10 -1 0 0
1. 基础版本
1 //Folyd 2 #include <iostream> 3 #include <vector> 4 #include <algorithm> 5 6 using namespace std; 7 8 const int INF = 0x3f3f3f3f; 9 const int MAX_POINT = 10; 10 11 //邻接矩阵保存点信息 12 int mapp[MAX_POINT][MAX_POINT]; 13 //保存任意两点之间的最短路径上的节点 14 vector<int> trace_path[MAX_POINT][MAX_POINT]; 15 16 void Folyd(int n) { 17 for (int k = 0; k < n; k++) 18 for (int i = 0; i < n; i++) 19 for (int j = 0; j < n; j++) 20 if (mapp[i][j] > mapp[i][k] + mapp[k][j]) { 21 mapp[i][j] = mapp[i][k] + mapp[k][j]; 22 trace_path[i][j].clear(); 23 //放入 i---k 路径节点 24 for (int z = 0; z < trace_path[i][k].size(); z++) 25 trace_path[i][j].push_back(trace_path[i][k][z]); 26 //放入 k---j 路径节点 27 for (int z = 0; z < trace_path[k][j].size(); z++) 28 trace_path[i][j].push_back(trace_path[k][j][z]); 29 } 30 } 31 32 void query(int from, int to) { 33 cout << "from " << from << " to " << to << " should cost " << mapp[from][to] <<"."<< endl; 34 cout << "trace_path: " ; 35 for (int i = 0; i < trace_path[from][to].size(); i++) 36 cout<< trace_path[from][to][i] << " -> "; 37 cout << to << endl; 38 } 39 40 int main(int argc, char const *argv[]) 41 { 42 int n; 43 cout << "Please input gragh points:"; 44 cin >> n; 45 //init container, 自己到自己默认 0,其他为 INF 46 for (int i = 0; i < n; i++) { 47 mapp[i][i] = 0; 48 for (int j = 0; j < n; j++) 49 if (i != j) 50 mapp[i][j] = INF; 51 } 52 53 54 int t = (n*(n - 1)) >> 1; 55 // 最多输入 n(n -1)>>1 条边 56 cout << "Please input edges format a tuple (f, t , v), to end input via (-1, 0, 0)" << endl; 57 while (--t > 0) { 58 int from, to, value; 59 cin >> from >> to >> value; 60 if (~from) { 61 //无向图 62 mapp[from][to] = value; 63 mapp[to][from] = value; 64 //每条路的前驱放入路径中 65 trace_path[from][to].push_back(from); 66 trace_path[to][from].push_back(to); 67 } 68 else 69 break; 70 } 71 72 Folyd(n); 73 74 //结果打表 75 cout << "====================" << endl; 76 for (int i = 0; i < n; i++) { 77 78 for (int j = 0; j < n; j++) 79 cout << mapp[i][j] << "\t"; 80 cout << endl; 81 } 82 cout << "====================" << endl; 83 while(1){ 84 int beginP, endP; 85 cout << "Please input begin point and end point:"; 86 cin >> beginP >> endP; 87 query(beginP, endP); 88 } 89 return 0; 90 }
2. 改进版本
1 //Folyd 2 //输入图,可以不连通 3 #include <iostream> 4 using namespace std; 5 6 const int INF = 0x3f3f3f3f; 7 const int MAX_POINT = 10; 8 const int NOTEXISTS = ~(0U); 9 10 //邻接矩阵保存点信息 11 int mapp[MAX_POINT][MAX_POINT]; 12 //path[i][j] = k ,表示从 i 到 j 最短路, k 邻接到j。 13 int path[MAX_POINT][MAX_POINT]; 14 void Folyd(int n) { 15 //初始化路径数组 16 for (int i = 0; i < n; i++) 17 for (int j = 0; j < n; j++) { 18 if (mapp[i][j] - INF) 19 path[i][j] = i; 20 else 21 path[i][j] = NOTEXISTS; 22 } 23 24 for (int k = 0; k < n; k++) 25 for (int i = 0; i < n; i++) 26 for (int j = 0; j < n; j++) 27 if (mapp[i][j] > mapp[i][k] + mapp[k][j]) { 28 mapp[i][j] = mapp[i][k] + mapp[k][j]; 29 path[i][j] = path[k][j]; 30 } 31 } 32 33 void print_path(int from, int to) { 34 if (path[from][to] != from) 35 print_path(from, path[from][to]); 36 cout << " -> " << to; 37 } 38 39 int main(int argc, char const *argv[]) 40 { 41 int n; 42 cout << "Please input gragh points:"; 43 cin >> n; 44 45 //init container 46 for (int i = 0; i < n; i++) { 47 mapp[i][i] = 0; //自己到自己默认 0 48 for (int j = 0; j < n; j++) 49 if (i != j) 50 mapp[i][j] = INF; 51 } 52 53 int t = (n*(n - 1)) >> 1; 54 // 最多输入 n(n -1)>>1 条边 55 cout << "Please input edges format a tuple (f, t , v), to end input via (-1, 0, 0)" << endl; 56 while (--t > 0) { 57 int from, to, value; 58 cin >> from >> to >> value; 59 if (~from) { 60 mapp[from][to] = value; 61 mapp[to][from] = value; 62 } 63 else 64 break; 65 } 66 Folyd(n); 67 68 cout << "====================" << endl; 69 for (int i = 0; i < n; i++) { 70 71 for (int j = 0; j < n; j++) 72 cout << mapp[i][j] << "\t"; 73 cout << endl; 74 } 75 cout << "====================" << endl; 76 while (1) { 77 int beginP, endP; 78 cout << "Please input begin point and end point:"; 79 cin >> beginP >> endP; 80 //print path 81 cout << "from " << beginP << " to " << endP << " should cost " << mapp[beginP][endP] << "." << endl; 82 if (path[beginP][endP] == NOTEXISTS) 83 cout << "No path!" << endl; 84 else { 85 cout << "trace_path: "; 86 cout << beginP; 87 print_path(beginP, endP); 88 cout << endl; 89 } 90 } 91 return 0; 92 }
参考资料:
https://blog.csdn.net/start0609/article/details/7779042
https://blog.csdn.net/immiao/article/details/22199939