keras 解决加载lstm+crf模型出错的问题
程序员文章站
2022-03-03 21:31:43
错误展示new_model = load_model(“model.h5”)报错:1、keras load_model valueerror: unknown layer :crf2、keras lo...
错误展示
new_model = load_model(“model.h5”)
报错:
1、keras load_model valueerror: unknown layer :crf
2、keras load_model valueerror: unknown loss function:crf_loss
错误修改
1、load_model修改源码:custom_objects = none 改为 def load_model(filepath, custom_objects, compile=true):
2、new_model = load_model(“model.h5”,custom_objects={‘crf': crf,‘crf_loss': crf_loss,‘crf_viterbi_accuracy': crf_viterbi_accuracy}
以上修改后,即可运行。
补充知识:用keras搭建bilstm crf
使用 实现的crf layer,
安装 keras-contrib
pip install git+https://www.github.com/keras-team/keras-contrib.git
code example:
# coding: utf-8 from keras.models import sequential from keras.layers import embedding from keras.layers import lstm from keras.layers import bidirectional from keras.layers import dense from keras.layers import timedistributed from keras.layers import dropout from keras_contrib.layers.crf import crf from keras_contrib.utils import save_load_utils vocab_size = 2500 embedding_out_dim = 128 time_stamps = 100 hidden_units = 200 dropout_rate = 0.3 num_class = 5 def build_embedding_bilstm2_crf_model(): """ 带embedding的双向lstm + crf """ model = sequential() model.add(embedding(vocab_size, output_dim=embedding_out_dim, input_length=time_stamps)) model.add(bidirectional(lstm(hidden_units, return_sequences=true))) model.add(dropout(dropout_rate)) model.add(bidirectional(lstm(hidden_units, return_sequences=true))) model.add(dropout(dropout_rate)) model.add(timedistributed(dense(num_class))) crf_layer = crf(num_class) model.add(crf_layer) model.compile('rmsprop', loss=crf_layer.loss_function, metrics=[crf_layer.accuracy]) return model def save_embedding_bilstm2_crf_model(model, filename): save_load_utils.save_all_weights(model,filename) def load_embedding_bilstm2_crf_model(filename): model = build_embedding_bilstm2_crf_model() save_load_utils.load_all_weights(model, filename) return model if __name__ == '__main__': model = build_embedding_bilstm2_crf_model()
注意:
如果执行build模型报错,则很可能是keras版本的问题。在keras-contrib==2.0.8且keras==2.0.8时,上面代码不会报错。
以上这篇keras 解决加载lstm+crf模型出错的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。