keras实现调用自己训练的模型,并去掉全连接层
程序员文章站
2022-03-03 21:28:01
其实很简单from keras.models import load_modelbase_model = load_model('model_resenet.h5')#加载指定的模型print(bas...
其实很简单
from keras.models import load_model base_model = load_model('model_resenet.h5')#加载指定的模型 print(base_model.summary())#输出网络的结构图
这是我的网络模型的输出,其实就是它的结构图
__________________________________________________________________________________________________ layer (type) output shape param # connected to ================================================================================================== input_1 (inputlayer) (none, 227, 227, 1) 0 __________________________________________________________________________________________________ conv2d_1 (conv2d) (none, 225, 225, 32) 320 input_1[0][0] __________________________________________________________________________________________________ batch_normalization_1 (batchnor (none, 225, 225, 32) 128 conv2d_1[0][0] __________________________________________________________________________________________________ activation_1 (activation) (none, 225, 225, 32) 0 batch_normalization_1[0][0] __________________________________________________________________________________________________ conv2d_2 (conv2d) (none, 225, 225, 32) 9248 activation_1[0][0] __________________________________________________________________________________________________ batch_normalization_2 (batchnor (none, 225, 225, 32) 128 conv2d_2[0][0] __________________________________________________________________________________________________ activation_2 (activation) (none, 225, 225, 32) 0 batch_normalization_2[0][0] __________________________________________________________________________________________________ conv2d_3 (conv2d) (none, 225, 225, 32) 9248 activation_2[0][0] __________________________________________________________________________________________________ batch_normalization_3 (batchnor (none, 225, 225, 32) 128 conv2d_3[0][0] __________________________________________________________________________________________________ merge_1 (merge) (none, 225, 225, 32) 0 batch_normalization_3[0][0] activation_1[0][0] __________________________________________________________________________________________________ activation_3 (activation) (none, 225, 225, 32) 0 merge_1[0][0] __________________________________________________________________________________________________ conv2d_4 (conv2d) (none, 225, 225, 32) 9248 activation_3[0][0] __________________________________________________________________________________________________ batch_normalization_4 (batchnor (none, 225, 225, 32) 128 conv2d_4[0][0] __________________________________________________________________________________________________ activation_4 (activation) (none, 225, 225, 32) 0 batch_normalization_4[0][0] __________________________________________________________________________________________________ conv2d_5 (conv2d) (none, 225, 225, 32) 9248 activation_4[0][0] __________________________________________________________________________________________________ batch_normalization_5 (batchnor (none, 225, 225, 32) 128 conv2d_5[0][0] __________________________________________________________________________________________________ merge_2 (merge) (none, 225, 225, 32) 0 batch_normalization_5[0][0] activation_3[0][0] __________________________________________________________________________________________________ activation_5 (activation) (none, 225, 225, 32) 0 merge_2[0][0] __________________________________________________________________________________________________ max_pooling2d_1 (maxpooling2d) (none, 112, 112, 32) 0 activation_5[0][0] __________________________________________________________________________________________________ conv2d_6 (conv2d) (none, 110, 110, 64) 18496 max_pooling2d_1[0][0] __________________________________________________________________________________________________ batch_normalization_6 (batchnor (none, 110, 110, 64) 256 conv2d_6[0][0] __________________________________________________________________________________________________ activation_6 (activation) (none, 110, 110, 64) 0 batch_normalization_6[0][0] __________________________________________________________________________________________________ conv2d_7 (conv2d) (none, 110, 110, 64) 36928 activation_6[0][0] __________________________________________________________________________________________________ batch_normalization_7 (batchnor (none, 110, 110, 64) 256 conv2d_7[0][0] __________________________________________________________________________________________________ activation_7 (activation) (none, 110, 110, 64) 0 batch_normalization_7[0][0] __________________________________________________________________________________________________ conv2d_8 (conv2d) (none, 110, 110, 64) 36928 activation_7[0][0] __________________________________________________________________________________________________ batch_normalization_8 (batchnor (none, 110, 110, 64) 256 conv2d_8[0][0] __________________________________________________________________________________________________ merge_3 (merge) (none, 110, 110, 64) 0 batch_normalization_8[0][0] activation_6[0][0] __________________________________________________________________________________________________ activation_8 (activation) (none, 110, 110, 64) 0 merge_3[0][0] __________________________________________________________________________________________________ conv2d_9 (conv2d) (none, 110, 110, 64) 36928 activation_8[0][0] __________________________________________________________________________________________________ batch_normalization_9 (batchnor (none, 110, 110, 64) 256 conv2d_9[0][0] __________________________________________________________________________________________________ activation_9 (activation) (none, 110, 110, 64) 0 batch_normalization_9[0][0] __________________________________________________________________________________________________ conv2d_10 (conv2d) (none, 110, 110, 64) 36928 activation_9[0][0] __________________________________________________________________________________________________ batch_normalization_10 (batchno (none, 110, 110, 64) 256 conv2d_10[0][0] __________________________________________________________________________________________________ merge_4 (merge) (none, 110, 110, 64) 0 batch_normalization_10[0][0] activation_8[0][0] __________________________________________________________________________________________________ activation_10 (activation) (none, 110, 110, 64) 0 merge_4[0][0] __________________________________________________________________________________________________ max_pooling2d_2 (maxpooling2d) (none, 55, 55, 64) 0 activation_10[0][0] __________________________________________________________________________________________________ conv2d_11 (conv2d) (none, 53, 53, 64) 36928 max_pooling2d_2[0][0] __________________________________________________________________________________________________ batch_normalization_11 (batchno (none, 53, 53, 64) 256 conv2d_11[0][0] __________________________________________________________________________________________________ activation_11 (activation) (none, 53, 53, 64) 0 batch_normalization_11[0][0] __________________________________________________________________________________________________ max_pooling2d_3 (maxpooling2d) (none, 26, 26, 64) 0 activation_11[0][0] __________________________________________________________________________________________________ conv2d_12 (conv2d) (none, 26, 26, 64) 36928 max_pooling2d_3[0][0] __________________________________________________________________________________________________ batch_normalization_12 (batchno (none, 26, 26, 64) 256 conv2d_12[0][0] __________________________________________________________________________________________________ activation_12 (activation) (none, 26, 26, 64) 0 batch_normalization_12[0][0] __________________________________________________________________________________________________ conv2d_13 (conv2d) (none, 26, 26, 64) 36928 activation_12[0][0] __________________________________________________________________________________________________ batch_normalization_13 (batchno (none, 26, 26, 64) 256 conv2d_13[0][0] __________________________________________________________________________________________________ merge_5 (merge) (none, 26, 26, 64) 0 batch_normalization_13[0][0] max_pooling2d_3[0][0] __________________________________________________________________________________________________ activation_13 (activation) (none, 26, 26, 64) 0 merge_5[0][0] __________________________________________________________________________________________________ conv2d_14 (conv2d) (none, 26, 26, 64) 36928 activation_13[0][0] __________________________________________________________________________________________________ batch_normalization_14 (batchno (none, 26, 26, 64) 256 conv2d_14[0][0] __________________________________________________________________________________________________ activation_14 (activation) (none, 26, 26, 64) 0 batch_normalization_14[0][0] __________________________________________________________________________________________________ conv2d_15 (conv2d) (none, 26, 26, 64) 36928 activation_14[0][0] __________________________________________________________________________________________________ batch_normalization_15 (batchno (none, 26, 26, 64) 256 conv2d_15[0][0] __________________________________________________________________________________________________ merge_6 (merge) (none, 26, 26, 64) 0 batch_normalization_15[0][0] activation_13[0][0] __________________________________________________________________________________________________ activation_15 (activation) (none, 26, 26, 64) 0 merge_6[0][0] __________________________________________________________________________________________________ max_pooling2d_4 (maxpooling2d) (none, 13, 13, 64) 0 activation_15[0][0] __________________________________________________________________________________________________ conv2d_16 (conv2d) (none, 11, 11, 32) 18464 max_pooling2d_4[0][0] __________________________________________________________________________________________________ batch_normalization_16 (batchno (none, 11, 11, 32) 128 conv2d_16[0][0] __________________________________________________________________________________________________ activation_16 (activation) (none, 11, 11, 32) 0 batch_normalization_16[0][0] __________________________________________________________________________________________________ conv2d_17 (conv2d) (none, 11, 11, 32) 9248 activation_16[0][0] __________________________________________________________________________________________________ batch_normalization_17 (batchno (none, 11, 11, 32) 128 conv2d_17[0][0] __________________________________________________________________________________________________ activation_17 (activation) (none, 11, 11, 32) 0 batch_normalization_17[0][0] __________________________________________________________________________________________________ conv2d_18 (conv2d) (none, 11, 11, 32) 9248 activation_17[0][0] __________________________________________________________________________________________________ batch_normalization_18 (batchno (none, 11, 11, 32) 128 conv2d_18[0][0] __________________________________________________________________________________________________ merge_7 (merge) (none, 11, 11, 32) 0 batch_normalization_18[0][0] activation_16[0][0] __________________________________________________________________________________________________ activation_18 (activation) (none, 11, 11, 32) 0 merge_7[0][0] __________________________________________________________________________________________________ conv2d_19 (conv2d) (none, 11, 11, 32) 9248 activation_18[0][0] __________________________________________________________________________________________________ batch_normalization_19 (batchno (none, 11, 11, 32) 128 conv2d_19[0][0] __________________________________________________________________________________________________ activation_19 (activation) (none, 11, 11, 32) 0 batch_normalization_19[0][0] __________________________________________________________________________________________________ conv2d_20 (conv2d) (none, 11, 11, 32) 9248 activation_19[0][0] __________________________________________________________________________________________________ batch_normalization_20 (batchno (none, 11, 11, 32) 128 conv2d_20[0][0] __________________________________________________________________________________________________ merge_8 (merge) (none, 11, 11, 32) 0 batch_normalization_20[0][0] activation_18[0][0] __________________________________________________________________________________________________ activation_20 (activation) (none, 11, 11, 32) 0 merge_8[0][0] __________________________________________________________________________________________________ max_pooling2d_5 (maxpooling2d) (none, 5, 5, 32) 0 activation_20[0][0] __________________________________________________________________________________________________ conv2d_21 (conv2d) (none, 3, 3, 64) 18496 max_pooling2d_5[0][0] __________________________________________________________________________________________________ batch_normalization_21 (batchno (none, 3, 3, 64) 256 conv2d_21[0][0] __________________________________________________________________________________________________ activation_21 (activation) (none, 3, 3, 64) 0 batch_normalization_21[0][0] __________________________________________________________________________________________________ conv2d_22 (conv2d) (none, 3, 3, 64) 36928 activation_21[0][0] __________________________________________________________________________________________________ batch_normalization_22 (batchno (none, 3, 3, 64) 256 conv2d_22[0][0] __________________________________________________________________________________________________ activation_22 (activation) (none, 3, 3, 64) 0 batch_normalization_22[0][0] __________________________________________________________________________________________________ conv2d_23 (conv2d) (none, 3, 3, 64) 36928 activation_22[0][0] __________________________________________________________________________________________________ batch_normalization_23 (batchno (none, 3, 3, 64) 256 conv2d_23[0][0] __________________________________________________________________________________________________ merge_9 (merge) (none, 3, 3, 64) 0 batch_normalization_23[0][0] activation_21[0][0] __________________________________________________________________________________________________ activation_23 (activation) (none, 3, 3, 64) 0 merge_9[0][0] __________________________________________________________________________________________________ conv2d_24 (conv2d) (none, 3, 3, 64) 36928 activation_23[0][0] __________________________________________________________________________________________________ batch_normalization_24 (batchno (none, 3, 3, 64) 256 conv2d_24[0][0] __________________________________________________________________________________________________ activation_24 (activation) (none, 3, 3, 64) 0 batch_normalization_24[0][0] __________________________________________________________________________________________________ conv2d_25 (conv2d) (none, 3, 3, 64) 36928 activation_24[0][0] __________________________________________________________________________________________________ batch_normalization_25 (batchno (none, 3, 3, 64) 256 conv2d_25[0][0] __________________________________________________________________________________________________ merge_10 (merge) (none, 3, 3, 64) 0 batch_normalization_25[0][0] activation_23[0][0] __________________________________________________________________________________________________ activation_25 (activation) (none, 3, 3, 64) 0 merge_10[0][0] __________________________________________________________________________________________________ max_pooling2d_6 (maxpooling2d) (none, 1, 1, 64) 0 activation_25[0][0] __________________________________________________________________________________________________ flatten_1 (flatten) (none, 64) 0 max_pooling2d_6[0][0] __________________________________________________________________________________________________ dense_1 (dense) (none, 256) 16640 flatten_1[0][0] __________________________________________________________________________________________________ dropout_1 (dropout) (none, 256) 0 dense_1[0][0] __________________________________________________________________________________________________ dense_2 (dense) (none, 2) 514 dropout_1[0][0] ================================================================================================== total params: 632,098 trainable params: 629,538 non-trainable params: 2,560 __________________________________________________________________________________________________
去掉模型的全连接层
from keras.models import load_model base_model = load_model('model_resenet.h5') resnet_model = model(inputs=base_model.input, outputs=base_model.get_layer('max_pooling2d_6').output) #'max_pooling2d_6'其实就是上述网络中全连接层的前面一层,当然这里你也可以选取其它层,把该层的名称代替'max_pooling2d_6'即可,这样其实就是截取网络,输出网络结构就是方便读取每层的名字。 print(resnet_model.summary())
新输出的网络结构:
__________________________________________________________________________________________________ layer (type) output shape param # connected to ================================================================================================== input_1 (inputlayer) (none, 227, 227, 1) 0 __________________________________________________________________________________________________ conv2d_1 (conv2d) (none, 225, 225, 32) 320 input_1[0][0] __________________________________________________________________________________________________ batch_normalization_1 (batchnor (none, 225, 225, 32) 128 conv2d_1[0][0] __________________________________________________________________________________________________ activation_1 (activation) (none, 225, 225, 32) 0 batch_normalization_1[0][0] __________________________________________________________________________________________________ conv2d_2 (conv2d) (none, 225, 225, 32) 9248 activation_1[0][0] __________________________________________________________________________________________________ batch_normalization_2 (batchnor (none, 225, 225, 32) 128 conv2d_2[0][0] __________________________________________________________________________________________________ activation_2 (activation) (none, 225, 225, 32) 0 batch_normalization_2[0][0] __________________________________________________________________________________________________ conv2d_3 (conv2d) (none, 225, 225, 32) 9248 activation_2[0][0] __________________________________________________________________________________________________ batch_normalization_3 (batchnor (none, 225, 225, 32) 128 conv2d_3[0][0] __________________________________________________________________________________________________ merge_1 (merge) (none, 225, 225, 32) 0 batch_normalization_3[0][0] activation_1[0][0] __________________________________________________________________________________________________ activation_3 (activation) (none, 225, 225, 32) 0 merge_1[0][0] __________________________________________________________________________________________________ conv2d_4 (conv2d) (none, 225, 225, 32) 9248 activation_3[0][0] __________________________________________________________________________________________________ batch_normalization_4 (batchnor (none, 225, 225, 32) 128 conv2d_4[0][0] __________________________________________________________________________________________________ activation_4 (activation) (none, 225, 225, 32) 0 batch_normalization_4[0][0] __________________________________________________________________________________________________ conv2d_5 (conv2d) (none, 225, 225, 32) 9248 activation_4[0][0] __________________________________________________________________________________________________ batch_normalization_5 (batchnor (none, 225, 225, 32) 128 conv2d_5[0][0] __________________________________________________________________________________________________ merge_2 (merge) (none, 225, 225, 32) 0 batch_normalization_5[0][0] activation_3[0][0] __________________________________________________________________________________________________ activation_5 (activation) (none, 225, 225, 32) 0 merge_2[0][0] __________________________________________________________________________________________________ max_pooling2d_1 (maxpooling2d) (none, 112, 112, 32) 0 activation_5[0][0] __________________________________________________________________________________________________ conv2d_6 (conv2d) (none, 110, 110, 64) 18496 max_pooling2d_1[0][0] __________________________________________________________________________________________________ batch_normalization_6 (batchnor (none, 110, 110, 64) 256 conv2d_6[0][0] __________________________________________________________________________________________________ activation_6 (activation) (none, 110, 110, 64) 0 batch_normalization_6[0][0] __________________________________________________________________________________________________ conv2d_7 (conv2d) (none, 110, 110, 64) 36928 activation_6[0][0] __________________________________________________________________________________________________ batch_normalization_7 (batchnor (none, 110, 110, 64) 256 conv2d_7[0][0] __________________________________________________________________________________________________ activation_7 (activation) (none, 110, 110, 64) 0 batch_normalization_7[0][0] __________________________________________________________________________________________________ conv2d_8 (conv2d) (none, 110, 110, 64) 36928 activation_7[0][0] __________________________________________________________________________________________________ batch_normalization_8 (batchnor (none, 110, 110, 64) 256 conv2d_8[0][0] __________________________________________________________________________________________________ merge_3 (merge) (none, 110, 110, 64) 0 batch_normalization_8[0][0] activation_6[0][0] __________________________________________________________________________________________________ activation_8 (activation) (none, 110, 110, 64) 0 merge_3[0][0] __________________________________________________________________________________________________ conv2d_9 (conv2d) (none, 110, 110, 64) 36928 activation_8[0][0] __________________________________________________________________________________________________ batch_normalization_9 (batchnor (none, 110, 110, 64) 256 conv2d_9[0][0] __________________________________________________________________________________________________ activation_9 (activation) (none, 110, 110, 64) 0 batch_normalization_9[0][0] __________________________________________________________________________________________________ conv2d_10 (conv2d) (none, 110, 110, 64) 36928 activation_9[0][0] __________________________________________________________________________________________________ batch_normalization_10 (batchno (none, 110, 110, 64) 256 conv2d_10[0][0] __________________________________________________________________________________________________ merge_4 (merge) (none, 110, 110, 64) 0 batch_normalization_10[0][0] activation_8[0][0] __________________________________________________________________________________________________ activation_10 (activation) (none, 110, 110, 64) 0 merge_4[0][0] __________________________________________________________________________________________________ max_pooling2d_2 (maxpooling2d) (none, 55, 55, 64) 0 activation_10[0][0] __________________________________________________________________________________________________ conv2d_11 (conv2d) (none, 53, 53, 64) 36928 max_pooling2d_2[0][0] __________________________________________________________________________________________________ batch_normalization_11 (batchno (none, 53, 53, 64) 256 conv2d_11[0][0] __________________________________________________________________________________________________ activation_11 (activation) (none, 53, 53, 64) 0 batch_normalization_11[0][0] __________________________________________________________________________________________________ max_pooling2d_3 (maxpooling2d) (none, 26, 26, 64) 0 activation_11[0][0] __________________________________________________________________________________________________ conv2d_12 (conv2d) (none, 26, 26, 64) 36928 max_pooling2d_3[0][0] __________________________________________________________________________________________________ batch_normalization_12 (batchno (none, 26, 26, 64) 256 conv2d_12[0][0] __________________________________________________________________________________________________ activation_12 (activation) (none, 26, 26, 64) 0 batch_normalization_12[0][0] __________________________________________________________________________________________________ conv2d_13 (conv2d) (none, 26, 26, 64) 36928 activation_12[0][0] __________________________________________________________________________________________________ batch_normalization_13 (batchno (none, 26, 26, 64) 256 conv2d_13[0][0] __________________________________________________________________________________________________ merge_5 (merge) (none, 26, 26, 64) 0 batch_normalization_13[0][0] max_pooling2d_3[0][0] __________________________________________________________________________________________________ activation_13 (activation) (none, 26, 26, 64) 0 merge_5[0][0] __________________________________________________________________________________________________ conv2d_14 (conv2d) (none, 26, 26, 64) 36928 activation_13[0][0] __________________________________________________________________________________________________ batch_normalization_14 (batchno (none, 26, 26, 64) 256 conv2d_14[0][0] __________________________________________________________________________________________________ activation_14 (activation) (none, 26, 26, 64) 0 batch_normalization_14[0][0] __________________________________________________________________________________________________ conv2d_15 (conv2d) (none, 26, 26, 64) 36928 activation_14[0][0] __________________________________________________________________________________________________ batch_normalization_15 (batchno (none, 26, 26, 64) 256 conv2d_15[0][0] __________________________________________________________________________________________________ merge_6 (merge) (none, 26, 26, 64) 0 batch_normalization_15[0][0] activation_13[0][0] __________________________________________________________________________________________________ activation_15 (activation) (none, 26, 26, 64) 0 merge_6[0][0] __________________________________________________________________________________________________ max_pooling2d_4 (maxpooling2d) (none, 13, 13, 64) 0 activation_15[0][0] __________________________________________________________________________________________________ conv2d_16 (conv2d) (none, 11, 11, 32) 18464 max_pooling2d_4[0][0] __________________________________________________________________________________________________ batch_normalization_16 (batchno (none, 11, 11, 32) 128 conv2d_16[0][0] __________________________________________________________________________________________________ activation_16 (activation) (none, 11, 11, 32) 0 batch_normalization_16[0][0] __________________________________________________________________________________________________ conv2d_17 (conv2d) (none, 11, 11, 32) 9248 activation_16[0][0] __________________________________________________________________________________________________ batch_normalization_17 (batchno (none, 11, 11, 32) 128 conv2d_17[0][0] __________________________________________________________________________________________________ activation_17 (activation) (none, 11, 11, 32) 0 batch_normalization_17[0][0] __________________________________________________________________________________________________ conv2d_18 (conv2d) (none, 11, 11, 32) 9248 activation_17[0][0] __________________________________________________________________________________________________ batch_normalization_18 (batchno (none, 11, 11, 32) 128 conv2d_18[0][0] __________________________________________________________________________________________________ merge_7 (merge) (none, 11, 11, 32) 0 batch_normalization_18[0][0] activation_16[0][0] __________________________________________________________________________________________________ activation_18 (activation) (none, 11, 11, 32) 0 merge_7[0][0] __________________________________________________________________________________________________ conv2d_19 (conv2d) (none, 11, 11, 32) 9248 activation_18[0][0] __________________________________________________________________________________________________ batch_normalization_19 (batchno (none, 11, 11, 32) 128 conv2d_19[0][0] __________________________________________________________________________________________________ activation_19 (activation) (none, 11, 11, 32) 0 batch_normalization_19[0][0] __________________________________________________________________________________________________ conv2d_20 (conv2d) (none, 11, 11, 32) 9248 activation_19[0][0] __________________________________________________________________________________________________ batch_normalization_20 (batchno (none, 11, 11, 32) 128 conv2d_20[0][0] __________________________________________________________________________________________________ merge_8 (merge) (none, 11, 11, 32) 0 batch_normalization_20[0][0] activation_18[0][0] __________________________________________________________________________________________________ activation_20 (activation) (none, 11, 11, 32) 0 merge_8[0][0] __________________________________________________________________________________________________ max_pooling2d_5 (maxpooling2d) (none, 5, 5, 32) 0 activation_20[0][0] __________________________________________________________________________________________________ conv2d_21 (conv2d) (none, 3, 3, 64) 18496 max_pooling2d_5[0][0] __________________________________________________________________________________________________ batch_normalization_21 (batchno (none, 3, 3, 64) 256 conv2d_21[0][0] __________________________________________________________________________________________________ activation_21 (activation) (none, 3, 3, 64) 0 batch_normalization_21[0][0] __________________________________________________________________________________________________ conv2d_22 (conv2d) (none, 3, 3, 64) 36928 activation_21[0][0] __________________________________________________________________________________________________ batch_normalization_22 (batchno (none, 3, 3, 64) 256 conv2d_22[0][0] __________________________________________________________________________________________________ activation_22 (activation) (none, 3, 3, 64) 0 batch_normalization_22[0][0] __________________________________________________________________________________________________ conv2d_23 (conv2d) (none, 3, 3, 64) 36928 activation_22[0][0] __________________________________________________________________________________________________ batch_normalization_23 (batchno (none, 3, 3, 64) 256 conv2d_23[0][0] __________________________________________________________________________________________________ merge_9 (merge) (none, 3, 3, 64) 0 batch_normalization_23[0][0] activation_21[0][0] __________________________________________________________________________________________________ activation_23 (activation) (none, 3, 3, 64) 0 merge_9[0][0] __________________________________________________________________________________________________ conv2d_24 (conv2d) (none, 3, 3, 64) 36928 activation_23[0][0] __________________________________________________________________________________________________ batch_normalization_24 (batchno (none, 3, 3, 64) 256 conv2d_24[0][0] __________________________________________________________________________________________________ activation_24 (activation) (none, 3, 3, 64) 0 batch_normalization_24[0][0] __________________________________________________________________________________________________ conv2d_25 (conv2d) (none, 3, 3, 64) 36928 activation_24[0][0] __________________________________________________________________________________________________ batch_normalization_25 (batchno (none, 3, 3, 64) 256 conv2d_25[0][0] __________________________________________________________________________________________________ merge_10 (merge) (none, 3, 3, 64) 0 batch_normalization_25[0][0] activation_23[0][0] __________________________________________________________________________________________________ activation_25 (activation) (none, 3, 3, 64) 0 merge_10[0][0] __________________________________________________________________________________________________ max_pooling2d_6 (maxpooling2d) (none, 1, 1, 64) 0 activation_25[0][0] ================================================================================================== total params: 614,944 trainable params: 612,384 non-trainable params: 2,560 __________________________________________________________________________________________________
以上这篇keras实现调用自己训练的模型,并去掉全连接层就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
上一篇: Golang通过SSH执行交换机操作实现