欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Pytorch实现ResNet50网络结构,包含ResNet18,ResNet34,ResNet50,ResNet101,ResNet152

程序员文章站 2022-03-03 21:25:55
创建各版本的ResNet模型,ResNet18,ResNet34,ResNet50,ResNet101,ResNet152原文地址: https://arxiv.org/pdf/1512.03385.pdf论文就不解读了,大部分解读都是翻译,看的似懂非懂,自己搞懂就行了。最近想着实现一下经典的网络结构,看了原文之后,根据原文代码结构开始实现。起初去搜了下各种版本的实现,发现很多博客都是错误百出,有些博文都发布几年了,错误还是没人发现,评论区几十号人不知道是真懂还是装懂,颇有些无奈啊。因此打算自己手动实...

创建各版本的ResNet模型,ResNet18,ResNet34,ResNet50,ResNet101,ResNet152

原文地址: https://arxiv.org/pdf/1512.03385.pdf


论文就不解读了,大部分解读都是翻译,看的似懂非懂,自己搞懂就行了。

最近想着实现一下经典的网络结构,看了原文之后,根据原文代码结构开始实现。起初去搜了下各种版本的实现,发现很多博客都是错误百出,有些博文都发布几年了,错误还是没人发现,评论区几十号人不知道是真懂还是装懂,颇有些无奈啊。因此打算自己手动实现网络结构,锻炼下自己的代码能力,也加深对网络结构的理解。写完之后也很欣慰,毕竟一直认为自己是个菜鸡,最近竟然接连不断的发现很多博文的错误之处,而且很多人看后都没发现的,想想自己似乎还有点小水平。

最后在一套代码里,实现了各版本ResNet,为了方便。

其实最后还是觉得应该每个网络分开写比较好。因为不同版本的网络内部操作是有很大差异的,本文下面的代码是将ResidualBlock和BottleNeckBlock分开写的,但是在维度的变换上差异还是很复杂,一方面想提高代码的复用性,另一方面也受制于复杂度。所以最后写出的算不上高复用性的精简代码。勉强能用。关于ResNet的结构,除各版本分开写之外,重复的block其实也可以分开写,因为BottleNeckBlock的维度变换太复杂,参数变换多,能分开就分开,复杂度小的地方可以复用。

以下是网络结构和实现代码,检验后都是对的;水平有限,如发现有错误,欢迎评论告知!

1 残差结构图

Pytorch实现ResNet50网络结构,包含ResNet18,ResNet34,ResNet50,ResNet101,ResNet152

2 VGG-19与ResNet34结构比较

Pytorch实现ResNet50网络结构,包含ResNet18,ResNet34,ResNet50,ResNet101,ResNet152

3 ResNet各版本的结构

Pytorch实现ResNet50网络结构,包含ResNet18,ResNet34,ResNet50,ResNet101,ResNet152

4 代码实现各版本

import torch.nn as nn from torch.nn import functional as F class ResNetModel(nn.Module): """
    实现通用的ResNet模块,可根据需要定义
    """ def __init__(self, num_classes=1000, layer_num=[],bottleneck = False): super(ResNetModel, self).__init__() #conv1 self.pre = nn.Sequential( #in 224*224*3 nn.Conv2d(3,64,7,2,3,bias=False), #输入通道3,输出通道64,卷积核7*7*64,步长2,根据以上计算出padding=3 #out 112*112*64 nn.BatchNorm2d(64), #输入通道C = 64 nn.ReLU(inplace=True), #inplace=True, 进行覆盖操作 # out 112*112*64 nn.MaxPool2d(3,2,1), #池化核3*3,步长2,计算得出padding=1; # out 56*56*64 ) if bottleneck: #resnet50以上使用BottleNeckBlock self.residualBlocks1 = self.add_layers(64, 256, layer_num[0], 64, bottleneck=bottleneck) self.residualBlocks2 = self.add_layers(128, 512, layer_num[1], 256, 2,bottleneck) self.residualBlocks3 = self.add_layers(256, 1024, layer_num[2], 512, 2,bottleneck) self.residualBlocks4 = self.add_layers(512, 2048, layer_num[3], 1024, 2,bottleneck) self.fc = nn.Linear(2048, num_classes) else: #resnet34使用普通ResidualBlock self.residualBlocks1 = self.add_layers(64,64,layer_num[0]) self.residualBlocks2 = self.add_layers(64,128,layer_num[1]) self.residualBlocks3 = self.add_layers(128,256,layer_num[2]) self.residualBlocks4 = self.add_layers(256,512,layer_num[3]) self.fc = nn.Linear(512, num_classes) def add_layers(self, inchannel, outchannel, nums, pre_channel=64, stride=1, bottleneck=False): layers = [] if bottleneck is False: #添加大模块首层, 首层需要判断inchannel == outchannel ? #跨维度需要stride=2,shortcut也需要1*1卷积扩维 layers.append(ResidualBlock(inchannel,outchannel)) #添加剩余nums-1层 for i in range(1,nums): layers.append(ResidualBlock(outchannel,outchannel)) return nn.Sequential(*layers) else: #resnet50使用bottleneck #传递每个block的shortcut,shortcut可以根据是否传递pre_channel进行推断 #添加首层,首层需要传递上一批blocks的channel layers.append(BottleNeckBlock(inchannel,outchannel,pre_channel,stride)) for i in range(1,nums): #添加n-1个剩余blocks,正常通道转换,不传递pre_channel layers.append(BottleNeckBlock(inchannel,outchannel)) return nn.Sequential(*layers) def forward(self, x): x = self.pre(x) x = self.residualBlocks1(x) x = self.residualBlocks2(x) x = self.residualBlocks3(x) x = self.residualBlocks4(x) x = F.avg_pool2d(x, 7) x = x.view(x.size(0), -1) return self.fc(x) class ResidualBlock(nn.Module): '''
    定义普通残差模块
    resnet34为普通残差块,resnet50为瓶颈结构
    ''' def __init__(self, inchannel, outchannel, stride=1, padding=1, shortcut=None): super(ResidualBlock, self).__init__() #resblock的首层,首层如果跨维度,卷积stride=2,shortcut需要1*1卷积扩维 if inchannel != outchannel: stride= 2 shortcut=nn.Sequential( nn.Conv2d(inchannel,outchannel,1,stride,bias=False), nn.BatchNorm2d(outchannel) ) # 定义残差块的左部分 self.left = nn.Sequential( nn.Conv2d(inchannel, outchannel, 3, stride, padding, bias=False), nn.BatchNorm2d(outchannel), nn.ReLU(inplace=True), nn.Conv2d(outchannel, outchannel, 3, 1, padding, bias=False), nn.BatchNorm2d(outchannel), ) #定义右部分 self.right = shortcut def forward(self, x): out = self.left(x) residual = x if self.right is None else self.right(x) out = out + residual return F.relu(out) class BottleNeckBlock(nn.Module): '''
    定义resnet50的瓶颈结构
    ''' def __init__(self,inchannel,outchannel, pre_channel=None, stride=1,shortcut=None): super(BottleNeckBlock, self).__init__() #首个bottleneck需要承接上一批blocks的输出channel if pre_channel is None: #为空则表示不是首个bottleneck, pre_channel = outchannel #正常通道转换 else: # 传递了pre_channel,表示为首个block,需要shortcut shortcut = nn.Sequential( nn.Conv2d(pre_channel,outchannel,1,stride,0,bias=False), nn.BatchNorm2d(outchannel) ) self.left = nn.Sequential( #1*1,inchannel nn.Conv2d(pre_channel, inchannel, 1, stride, 0, bias=False), nn.BatchNorm2d(inchannel), nn.ReLU(inplace=True), #3*3,inchannel nn.Conv2d(inchannel,inchannel,3,1,1,bias=False), nn.BatchNorm2d(inchannel), nn.ReLU(inplace=True), #1*1,outchannel nn.Conv2d(inchannel,outchannel,1,1,0,bias=False), nn.BatchNorm2d(outchannel), nn.ReLU(inplace=True), ) self.right = shortcut def forward(self,x): out = self.left(x) residual = x if self.right is None else self.right(x) return F.relu(out+residual) if __name__ == '__main__': # channel_nums = [64,128,256,512,1024,2048] num_classes = 6 #layers = 18, 34, 50, 101, 152 layer_nums = [[2,2,2,2],[3,4,6,3],[3,4,6,3],[3,4,23,3],[3,8,36,3]] #选择resnet版本, # resnet18 ——0;resnet34——1,resnet-50——2,resnet-101——3,resnet-152——4 i = 3; bottleneck = i >= 2 #i<2, false,使用普通的ResidualBlock; i>=2,true,使用BottleNeckBlock model = ResNetModel(num_classes,layer_nums[i],bottleneck) print(model) 

本文地址:https://blog.csdn.net/weixin_44277280/article/details/109035746