欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

解决pytorch 损失函数中输入输出不匹配的问题

程序员文章站 2022-04-04 14:38:09
一、pytorch 损失函数中输入输出不匹配问题file "c:\users\rain\appdata\local\programs\python\anaconda.3.5.1\envs\python...

一、pytorch 损失函数中输入输出不匹配问题

file "c:\users\rain\appdata\local\programs\python\anaconda.3.5.1\envs\python35\python35\lib\site-packages\torch\nn\modules\module.py", line 491, in __call__  result = self.forward(*input, **kwargs)

file "c:\users\rain\appdata\local\programs\python\anaconda.3.5.1\envs\python35\python35\lib\site-packages\torch\nn\modules\loss.py", line 500, in forward reduce=self.reduce)
 
file "c:\users\rain\appdata\local\programs\python\anaconda.3.5.1\envs\python35\python35\lib\site-packages\torch\nn\functional.py", line 1514, in binary_cross_entropy_with_logits
 
raise valueerror("target size ({}) must be the same as input size ({})".format(target.size(), input.size()))
 
valueerror: target size (torch.size([32])) must be the same as input size (torch.size([32,2]))

原因

input 和 target 尺寸不匹配

解决方案:

将target转为onehot

例如:

one_hot = torch.nn.functional.one_hot(masks, num_classes=args.num_classes)

二、pytorch遇到权重不匹配的问题

最近,楼主在pytorch微调模型时遇到

size mismatch for fc.weight: copying a param with shape torch.size([1000, 2048]) from checkpoint, the shape in current model is torch.size([2, 2048]).

size mismatch for fc.bias: copying a param with shape torch.size([1000]) from checkpoint, the shape in current model is torch.size([2]).

这个是因为楼主下载的预训练模型中的全连接层是1000类别的,而楼主本人的类别只有2类,所以会报不匹配的错误

解决方案:

从报错信息可以看出,是fc层的权重参数不匹配,那我们只要不load 这一层的参数就可以了。

net = se_resnet50(num_classes=2)
pretrained_dict = torch.load("./senet/seresnet50-60a8950a85b2b.pkl")
model_dict = net.state_dict()
# 重新制作预训练的权重,主要是减去参数不匹配的层,楼主这边层名为“fc”
pretrained_dict = {k: v for k, v in pretrained_dict.items() if (k in model_dict and 'fc' not in k)}
# 更新权重
model_dict.update(pretrained_dict)
net.load_state_dict(model_dict)

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。