欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

UTM投影坐标转WGS84大地坐标

程序员文章站 2022-04-04 12:57:26
...

public class UTMAndWGS84
{
static double pi = Math.PI;

	/* Ellipsoid model constants (actual values here are for WGS84) */
	static double sm_a = 6378137.0;
	static double sm_b = 6356752.314;
	static double sm_EccSquared = 6.69437999013e-03;

	static double UTMScaleFactor = 0.9996;


	/*
    * DegToRad
    *
    * Converts degrees to radians.
    *
    */
	private static double DegToRad(double deg)
	{
		return (deg / 180.0 * pi);
	}




	/*
    * RadToDeg
    *
    * Converts radians to degrees.
    *
    */
	private static double RadToDeg(double rad)
	{
		return (rad / pi * 180.0);
	}




	/*
    * ArcLengthOfMeridian
    *
    * Computes the ellipsoidal distance from the equator to a point at a
    * given latitude.
    *
    * Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
    * GPS: Theory and Practice, 3rd ed.  New York: Springer-Verlag Wien, 1994.
    *
    * Inputs:
    *     phi - Latitude of the point, in radians.
    *
    * Globals:
    *     sm_a - Ellipsoid model major axis.
    *     sm_b - Ellipsoid model minor axis.
    *
    * Returns:
    *     The ellipsoidal distance of the point from the equator, in meters.
    *
    */
	private static double ArcLengthOfMeridian(double phi)
	{
		double alpha, beta, gamma, delta, epsilon, n;
		double result;

		/* Precalculate n */
		n = (sm_a - sm_b) / (sm_a + sm_b);

		/* Precalculate alpha */
		alpha = ((sm_a + sm_b) / 2.0)
		   * (1.0 + (Math.Pow(n, 2.0) / 4.0) + (Math.Pow(n, 4.0) / 64.0));

		/* Precalculate beta */
		beta = (-3.0 * n / 2.0) + (9.0 * Math.Pow(n, 3.0) / 16.0)
		   + (-3.0 * Math.Pow(n, 5.0) / 32.0);

		/* Precalculate gamma */
		gamma = (15.0 * Math.Pow(n, 2.0) / 16.0)
			+ (-15.0 * Math.Pow(n, 4.0) / 32.0);

		/* Precalculate delta */
		delta = (-35.0 * Math.Pow(n, 3.0) / 48.0)
			+ (105.0 * Math.Pow(n, 5.0) / 256.0);

		/* Precalculate epsilon */
		epsilon = (315.0 * Math.Pow(n, 4.0) / 512.0);

		/* Now calculate the sum of the series and return */
		result = alpha
			* (phi + (beta * Math.Sin(2.0 * phi))
				+ (gamma * Math.Sin(4.0 * phi))
				+ (delta * Math.Sin(6.0 * phi))
				+ (epsilon * Math.Sin(8.0 * phi)));

		return result;
	}



	/*
    * UTMCentralMeridian
    *
    * Determines the central meridian for the given UTM zone.
    *
    * Inputs:
    *     zone - An integer value designating the UTM zone, range [1,60].
    *
    * Returns:
    *   The central meridian for the given UTM zone, in radians, or zero
    *   if the UTM zone parameter is outside the range [1,60].
    *   Range of the central meridian is the radian equivalent of [-177,+177].
    *
    */
	private static double UTMCentralMeridian(double zone)
	{
		double cmeridian;

		cmeridian = DegToRad(-183.0 + (zone * 6.0));

		return cmeridian;
	}



	/*
    * FootpointLatitude
    *
    * Computes the footpoint latitude for use in converting transverse
    * Mercator coordinates to ellipsoidal coordinates.
    *
    * Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
    *   GPS: Theory and Practice, 3rd ed.  New York: Springer-Verlag Wien, 1994.
    *
    * Inputs:
    *   y - The UTM northing coordinate, in meters.
    *
    * Returns:
    *   The footpoint latitude, in radians.
    *
    */
	private static double FootpointLatitude(double y)
	{
		double y_, alpha_, beta_, gamma_, delta_, epsilon_, n;
		double result;

		/* Precalculate n (Eq. 10.18) */
		n = (sm_a - sm_b) / (sm_a + sm_b);

		/* Precalculate alpha_ (Eq. 10.22) */
		/* (Same as alpha in Eq. 10.17) */
		alpha_ = ((sm_a + sm_b) / 2.0)
			* (1 + (Math.Pow(n, 2.0) / 4) + (Math.Pow(n, 4.0) / 64));

		/* Precalculate y_ (Eq. 10.23) */
		y_ = y / alpha_;

		/* Precalculate beta_ (Eq. 10.22) */
		beta_ = (3.0 * n / 2.0) + (-27.0 * Math.Pow(n, 3.0) / 32.0)
			+ (269.0 * Math.Pow(n, 5.0) / 512.0);

		/* Precalculate gamma_ (Eq. 10.22) */
		gamma_ = (21.0 * Math.Pow(n, 2.0) / 16.0)
			+ (-55.0 * Math.Pow(n, 4.0) / 32.0);

		/* Precalculate delta_ (Eq. 10.22) */
		delta_ = (151.0 * Math.Pow(n, 3.0) / 96.0)
			+ (-417.0 * Math.Pow(n, 5.0) / 128.0);

		/* Precalculate epsilon_ (Eq. 10.22) */
		epsilon_ = (1097.0 * Math.Pow(n, 4.0) / 512.0);

		/* Now calculate the sum of the series (Eq. 10.21) */
		result = y_ + (beta_ * Math.Sin(2.0 * y_))
			+ (gamma_ * Math.Sin(4.0 * y_))
			+ (delta_ * Math.Sin(6.0 * y_))
			+ (epsilon_ * Math.Sin(8.0 * y_));

		return result;
	}



	/*
    * MapLatLonToXY
    *
    * Converts a latitude/longitude pair to x and y coordinates in the
    * Transverse Mercator projection.  Note that Transverse Mercator is not
    * the same as UTM; a scale factor is required to convert between them.
    *
    * Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
    * GPS: Theory and Practice, 3rd ed.  New York: Springer-Verlag Wien, 1994.
    *
    * Inputs:
    *    phi - Latitude of the point, in radians.
    *    lambda - Longitude of the point, in radians.
    *    lambda0 - Longitude of the central meridian to be used, in radians.
    *
    * Outputs:
    *    xy - A 2-element array containing the x and y coordinates
    *         of the computed point.
    *
    * Returns:
    *    The function does not return a value.
    *
    */
	private static void MapLatLonToXY(double phi, double lambda, double lambda0, out double[] xy)
	{
		double N, nu2, ep2, t, t2, l;
		double l3coef, l4coef, l5coef, l6coef, l7coef, l8coef;
		double tmp;

		/* Precalculate ep2 */
		ep2 = (Math.Pow(sm_a, 2.0) - Math.Pow(sm_b, 2.0)) / Math.Pow(sm_b, 2.0);

		/* Precalculate nu2 */
		nu2 = ep2 * Math.Pow(Math.Cos(phi), 2.0);

		/* Precalculate N */
		N = Math.Pow(sm_a, 2.0) / (sm_b * Math.Sqrt(1 + nu2));

		/* Precalculate t */
		t = Math.Tan(phi);
		t2 = t * t;
		tmp = (t2 * t2 * t2) - Math.Pow(t, 6.0);

		/* Precalculate l */
		l = lambda - lambda0;

		/* Precalculate coefficients for l**n in the equations below
           so a normal human being can read the expressions for easting
           and northing
           -- l**1 and l**2 have coefficients of 1.0 */
		l3coef = 1.0 - t2 + nu2;

		l4coef = 5.0 - t2 + 9 * nu2 + 4.0 * (nu2 * nu2);

		l5coef = 5.0 - 18.0 * t2 + (t2 * t2) + 14.0 * nu2
			- 58.0 * t2 * nu2;

		l6coef = 61.0 - 58.0 * t2 + (t2 * t2) + 270.0 * nu2
			- 330.0 * t2 * nu2;

		l7coef = 61.0 - 479.0 * t2 + 179.0 * (t2 * t2) - (t2 * t2 * t2);

		l8coef = 1385.0 - 3111.0 * t2 + 543.0 * (t2 * t2) - (t2 * t2 * t2);

		xy = new double[2];
		/* Calculate easting (x) */
		xy[0] = N * Math.Cos(phi) * l
			+ (N / 6.0 * Math.Pow(Math.Cos(phi), 3.0) * l3coef * Math.Pow(l, 3.0))
			+ (N / 120.0 * Math.Pow(Math.Cos(phi), 5.0) * l5coef * Math.Pow(l, 5.0))
			+ (N / 5040.0 * Math.Pow(Math.Cos(phi), 7.0) * l7coef * Math.Pow(l, 7.0));

		/* Calculate northing (y) */
		xy[1] = ArcLengthOfMeridian(phi)
			+ (t / 2.0 * N * Math.Pow(Math.Cos(phi), 2.0) * Math.Pow(l, 2.0))
			+ (t / 24.0 * N * Math.Pow(Math.Cos(phi), 4.0) * l4coef * Math.Pow(l, 4.0))
			+ (t / 720.0 * N * Math.Pow(Math.Cos(phi), 6.0) * l6coef * Math.Pow(l, 6.0))
			+ (t / 40320.0 * N * Math.Pow(Math.Cos(phi), 8.0) * l8coef * Math.Pow(l, 8.0));

		return;
	}



	/*
    * MapXYToLatLon
    *
    * Converts x and y coordinates in the Transverse Mercator projection to
    * a latitude/longitude pair.  Note that Transverse Mercator is not
    * the same as UTM; a scale factor is required to convert between them.
    *
    * Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
    *   GPS: Theory and Practice, 3rd ed.  New York: Springer-Verlag Wien, 1994.
    *
    * Inputs:
    *   x - The easting of the point, in meters.
    *   y - The northing of the point, in meters.
    *   lambda0 - Longitude of the central meridian to be used, in radians.
    *
    * Outputs:
    *   philambda - A 2-element containing the latitude and longitude
    *               in radians.
    *
    * Returns:
    *   The function does not return a value.
    *
    * Remarks:
    *   The local variables Nf, nuf2, tf, and tf2 serve the same purpose as
    *   N, nu2, t, and t2 in MapLatLonToXY, but they are computed with respect
    *   to the footpoint latitude phif.
    *
    *   x1frac, x2frac, x2poly, x3poly, etc. are to enhance readability and
    *   to optimize computations.
    *
    */
	private static void MapXYToLatLon(double x, double y, double lambda0, out double[] xy)
	{
		double phif, Nf, Nfpow, nuf2, ep2, tf, tf2, tf4, cf;
		double x1frac, x2frac, x3frac, x4frac, x5frac, x6frac, x7frac, x8frac;
		double x2poly, x3poly, x4poly, x5poly, x6poly, x7poly, x8poly;

		/* Get the value of phif, the footpoint latitude. */
		phif = FootpointLatitude(y);

		/* Precalculate ep2 */
		ep2 = (Math.Pow(sm_a, 2.0) - Math.Pow(sm_b, 2.0))
			  / Math.Pow(sm_b, 2.0);

		/* Precalculate cos (phif) */
		cf = Math.Cos(phif);

		/* Precalculate nuf2 */
		nuf2 = ep2 * Math.Pow(cf, 2.0);

		/* Precalculate Nf and initialize Nfpow */
		Nf = Math.Pow(sm_a, 2.0) / (sm_b * Math.Sqrt(1 + nuf2));
		Nfpow = Nf;

		/* Precalculate tf */
		tf = Math.Tan(phif);
		tf2 = tf * tf;
		tf4 = tf2 * tf2;

		/* Precalculate fractional coefficients for x**n in the equations
           below to simplify the expressions for latitude and longitude. */
		x1frac = 1.0 / (Nfpow * cf);

		Nfpow *= Nf;   /* now equals Nf**2) */
		x2frac = tf / (2.0 * Nfpow);

		Nfpow *= Nf;   /* now equals Nf**3) */
		x3frac = 1.0 / (6.0 * Nfpow * cf);

		Nfpow *= Nf;   /* now equals Nf**4) */
		x4frac = tf / (24.0 * Nfpow);

		Nfpow *= Nf;   /* now equals Nf**5) */
		x5frac = 1.0 / (120.0 * Nfpow * cf);

		Nfpow *= Nf;   /* now equals Nf**6) */
		x6frac = tf / (720.0 * Nfpow);

		Nfpow *= Nf;   /* now equals Nf**7) */
		x7frac = 1.0 / (5040.0 * Nfpow * cf);

		Nfpow *= Nf;   /* now equals Nf**8) */
		x8frac = tf / (40320.0 * Nfpow);

		/* Precalculate polynomial coefficients for x**n.
           -- x**1 does not have a polynomial coefficient. */
		x2poly = -1.0 - nuf2;

		x3poly = -1.0 - 2 * tf2 - nuf2;

		x4poly = 5.0 + 3.0 * tf2 + 6.0 * nuf2 - 6.0 * tf2 * nuf2
			- 3.0 * (nuf2 * nuf2) - 9.0 * tf2 * (nuf2 * nuf2);

		x5poly = 5.0 + 28.0 * tf2 + 24.0 * tf4 + 6.0 * nuf2 + 8.0 * tf2 * nuf2;

		x6poly = -61.0 - 90.0 * tf2 - 45.0 * tf4 - 107.0 * nuf2
			+ 162.0 * tf2 * nuf2;

		x7poly = -61.0 - 662.0 * tf2 - 1320.0 * tf4 - 720.0 * (tf4 * tf2);

		x8poly = 1385.0 + 3633.0 * tf2 + 4095.0 * tf4 + 1575 * (tf4 * tf2);
		xy = new double[2];
		/* Calculate latitude */
		xy[0] = phif + x2frac * x2poly * (x * x)
			+ x4frac * x4poly * Math.Pow(x, 4.0)
			+ x6frac * x6poly * Math.Pow(x, 6.0)
			+ x8frac * x8poly * Math.Pow(x, 8.0);

		/* Calculate longitude */
		xy[1] = lambda0 + x1frac * x
			+ x3frac * x3poly * Math.Pow(x, 3.0)
			+ x5frac * x5poly * Math.Pow(x, 5.0)
			+ x7frac * x7poly * Math.Pow(x, 7.0);

		return;
	}




	/*
    * LatLonToUTMXY
    *
    * Converts a latitude/longitude pair to x and y coordinates in the
    * Universal Transverse Mercator projection.
    *
    * Inputs:
    *   lat - Latitude of the point, in radians.
    *   lon - Longitude of the point, in radians.
    *   zone - UTM zone to be used for calculating values for x and y.
    *          If zone is less than 1 or greater than 60, the routine
    *          will determine the appropriate zone from the value of lon.
    *
    * Outputs:
    *   xy - A 2-element array where the UTM x and y values will be stored.
    *
    * Returns:
    *   The UTM zone used for calculating the values of x and y.
    *
    */
	public static double[] LatLonToUTMXY(double lat, double lon)
	{
		double zone = Math.Floor((lon + 180.0) / 6) + 1;
		double[] xy = new double[2];
		MapLatLonToXY(DegToRad(lat), DegToRad(lon), UTMCentralMeridian(zone), out xy);

		/* Adjust easting and northing for UTM system. */
		xy[0] = xy[0] * UTMScaleFactor + 500000.0;
		xy[1] = xy[1] * UTMScaleFactor;
		if (xy[1] < 0.0)
			xy[1] = xy[1] + 10000000.0;

		return new double[] { xy[0], xy[1], zone };
	}



	/*
    * UTMXYToLatLon
    *
    * Converts x and y coordinates in the Universal Transverse Mercator
    * projection to a latitude/longitude pair.
    *
    * Inputs:
    *	x - The easting of the point, in meters.
    *	y - The northing of the point, in meters.
    *	zone - The UTM zone in which the point lies.
    *	southhemi - True if the point is in the southern hemisphere;
    *               false otherwise.
    *
    * Outputs:
    *	latlon - A 2-element array containing the latitude and
    *            longitude of the point, in radians.
    *
    * Returns:
    *	The function does not return a value.
    *
    */
	public static Coordinate UTMXYToLatLon(double x, double y, double zone, bool southhemi)
	{
		double cmeridian;

		x -= 500000.0;
		x /= UTMScaleFactor;

		/* If in southern hemisphere, adjust y accordingly. */
		if (southhemi)
			y -= 10000000.0;

		y /= UTMScaleFactor;

		cmeridian = UTMCentralMeridian(zone);
		double[] xy = new double[2];
		MapXYToLatLon(x, y, cmeridian, out xy);
		Coordinate coordinate = new Coordinate();
		coordinate.Latitude = RadToDeg(xy[0]);
		coordinate.Lonitude = RadToDeg(xy[1]);
		return coordinate;
	}
}