欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

8种最差的预测建模技术_你认同吗? AntGitCVS 

程序员文章站 2022-04-03 19:14:06
...
阅读全文http://click.aliyun.com/m/23305/

以下技术大多数已经发展了较长时间(在过去10年中),其中大部分缺点已经得到弥补,因此更新后的技术已经远不同于其原始版本,性能也大为提高。但通常情况下,这些有弊端的技术仍然被广泛使用。

1.线性回归
  依靠一般标准、异方差性和其他假设,不能捕获高度非线性的混沌模式。它倾向于过度拟合、参数难以解读,并且在独立变量高度相关时非常不稳定。修正方法包括减少变量、进行变量变换,以及使用约束回归(例如,岭回归或Lasso回归)。

2.传统决策树
  大而不稳定,无法解读,而且容易过度拟合。修正方法包括使用多个小决策树,而不是使用一个大决策树。

3.线性判别分析法
  用于监督聚类。这是一个很差的技术,因为它假定簇没有重叠并且被超平面完全分开。在实践中从来没有这样的情况。应改用密度估计技术。

4.K-均值聚类
  倾向于产生环形簇,不容易处理不符合高斯混合分布的数据点。

5.神经网络
  不容易解读,不稳定,容易过度拟合。

6.最大似然估计
  要求你的数据符合预先规定的概率分布。 它不是数据驱动的,很多时候预先指定的高斯分布和你的数据很不适合。

7.高维密度估计
  常受到维度的影响。修正方法之一是使用非参数核密度估计与自适应的带宽。

8.朴素贝叶斯
  用于如欺诈检测、垃圾邮件检测和评分。它们假定变量是独立的,但如果不是,就会惨遭失败。在进行欺诈检测和垃圾邮件检测时,变量(有时被称为规则)是高度相关的。修正方法之一是将变量分为独立的变量簇,每个簇包含高度相关的变量。然后将朴素贝叶斯应用于簇,或者使用数据减少技术。不好的文本挖掘技术(例如,垃圾邮件检测中的基本“单词”规则)和朴素贝叶斯结合会产生非常可怕的结果,带来很多误报和漏报。

  这些不好的模型仍然被广泛使用的原因如下。
阅读全文http://click.aliyun.com/m/23305/
相关标签: Ant Git CVS