欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

浅析R语言中map(映射)与reduce(规约)

程序员文章站 2022-04-03 14:09:17
map(映射)与reduce(规约)操作在数据处理中非常常见,r语言的核心是向量化操作,自带的apply系列函数完成了数据框的向量化计算,而purrr包中的map与reduce系列函数很好的拓展了向量...

map(映射)与reduce(规约)操作在数据处理中非常常见,r语言的核心是向量化操作,自带的apply系列函数完成了数据框的向量化计算,而purrr包中的map与reduce系列函数很好的拓展了向量化计算,使r语言处理数据更加优雅流畅。

purrr包是tidyverse系列中的包,开发者是大名鼎鼎的hadley wickham。purrr包中的函数很多,使用最多的是mapreduce系列函数。

安装包

install.packages('purrr')

map

map表示映射,可以在一个或多个列表/向量的每个位置上应用相同函数进行计算。map函数的映射对象只有一个。

浅析R语言中map(映射)与reduce(规约)

map(.x, .f, …)
.x: 列表或向量;
.f: 映射函数;
...: 映射函数的其他参数

# 加载包
library(purrr)
# 单个向量map
1:4 %>%
  map(rnorm)
## [[1]]
## [1] 0.1892454
## 
## [[2]]
## [1] -1.149757  1.782667
## 
## [[3]]
## [1] 0.9311241 0.5962078 0.8575180
## 
## [[4]]
## [1]  1.2708588  0.7957794 -0.0106283  0.5393979

map函数的结果来看,其返回与输入向量等长的结果,类型为列表

其他参数

可以指定映射函数的其他参数:

# 单个向量map,指定函数参数
1:4 %>%
  map(rnorm,mean=1,sd=2)
## [[1]]
## [1] 1.610763
## 
## [[2]]
## [1] -0.4034499  1.5814313
## 
## [[3]]
## [1] 2.806429 1.719962 2.005490
## 
## [[4]]
## [1] 2.170663 2.849836 1.085069 4.130320

匿名函数

传入的函数可以是匿名函数:

# 单个向量map,使用匿名函数
1:4 %>%
  map(function(x) rnorm(x))
## [[1]]
## [1] 0.01422782
## 
## [[2]]
## [1] 1.7895586 0.7135593
## 
## [[3]]
## [1]  0.0603224  1.0498781 -1.0028828
## 
## [[4]]
## [1]  0.2673761 -1.1297717  0.7769814  1.5304043

公式函数

还可以把函数当成一个公式传入,这是purrr提供的高级功能,能够简化代码量。

  • 当函数只有一个参数时,公式函数中用.x代替参数;
  • 当函数有两个参数时,公式函数中用.x,.y代替参数;
  • 当函数有多个参数时,公式函数中用..1,..2,..3代替参数。
# 单个向量map,使用公式函数
1:4 %>%
  map(~rnorm(.x))
## [[1]]
## [1] -1.471681
## 
## [[2]]
## [1] -0.04243286 -0.68348293
## 
## [[3]]
## [1]  1.613470 -0.750001 -1.278718
## 
## [[4]]
## [1]  0.9369563 -0.5285622  0.8601058  1.8868754

map2

map2函数是map函数的变形,映射对象有两个,需要注意两个列表/向量的长度必须相同

浅析R语言中map(映射)与reduce(规约)

map2(.x,.y, .f, …)
.x: 列表或向量;
.y: 列表或向量,与.x等长;
.f: 映射函数;
...: 映射函数的其他参数

# 两个向量map
map2(1:3,2:4,sum)
## [[1]]
## [1] 3
## 
## [[2]]
## [1] 5
## 
## [[3]]
## [1] 7

用公式函数的方式:

# 两个向量map,使用公式函数
map2(1:3,2:4,~sum(.x,.y))
## [[1]]
## [1] 3
## 
## [[2]]
## [1] 5
## 
## [[3]]
## [1] 7
# 两个向量map,使用公式函数
map2(1:3,2:4,~sum(..1,..2))
## [[1]]
## [1] 3
## 
## [[2]]
## [1] 5
## 
## [[3]]
## [1] 7

pmap

pmap函数是map函数的变形,映射对象为多个,需要注意多个列表/向量的长度必须相同

浅析R语言中map(映射)与reduce(规约)

pmap(.l, .f, …)
.l: 列表向量/列表;
.f: 映射函数;
...: 映射函数的其他参数

# 多个向量map
pmap(list(1:3,2:4,3:5),sum)
## [[1]]
## [1] 6
## 
## [[2]]
## [1] 9
## 
## [[3]]
## [1] 12

用公式函数的方式:

# 多个向量map,使用公式函数
pmap(list(1:3,2:4,3:5),~sum(..1,..2,..3))
## [[1]]
## [1] 6
## 
## [[2]]
## [1] 9
## 
## [[3]]
## [1] 12

map变形

map,map2pmap返回的数据格式都是列表,有时候需要对返回的结果进行数据格式转换,这时候可以直接使用map系列的变形函数,直接一步完成。

# 返回列表
map(mtcars,mean)
## $mpg
## [1] 20.09062
## 
## $cyl
## [1] 6.1875
## 
## $disp
## [1] 230.7219
## 
## $hp
## [1] 146.6875
## 
## $drat
## [1] 3.596563
## 
## $wt
## [1] 3.21725
## 
## $qsec
## [1] 17.84875
## 
## $vs
## [1] 0.4375
## 
## $am
## [1] 0.40625
## 
## $gear
## [1] 3.6875
## 
## $carb
## [1] 2.8125

使用map_df函数,直接返回数据框格式。

# 返回数据框
map_df(mtcars,mean)
## # a tibble: 1 x 11
##     mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  20.1  6.19  231.  147.  3.60  3.22  17.8 0.438 0.406  3.69  2.81
# 返回字符向量
map_chr(mtcars,mean)
##          mpg          cyl         disp           hp         drat           wt 
##  "20.090625"   "6.187500" "230.721875" "146.687500"   "3.596563"   "3.217250" 
##         qsec           vs           am         gear         carb 
##  "17.848750"   "0.437500"   "0.406250"   "3.687500"   "2.812500"

其他的有:

  • map_lgl/map2_lgl/pmap_lgl:返回逻辑向量;
  • map_int/map2_int/pmap_int:返回整数向量;
  • map_dbl/map2_dbl/pmap_dbl:返回浮点数向量;
  • map_chr/map2_chr/pmap_chr:返回字符串向量。

reduce

reduce函数表示规约,计算向量中相邻的两个元素,结果再与第三个元素计算,…,最后计算出一个值。

浅析R语言中map(映射)与reduce(规约)

reduce(.x, .f, …)
.x: 列表向量/列表;
.f: 规约函数;
...: 函数的其他参数

# 单个向量reduce
reduce(1:5,paste)

## [1] "1 2 3 4 5"

reduce2

reduce2函数可以同时对两个向量进行规约计算,注意第二个向量长度需要比第一个向量小1

reduce2(.x, .y,.f, …)
.x: 列表向量/列表;
.y: 列表向量/列表,长度比.x小1;
.f: 规约函数;
...: 函数的其他参数

# 多个向量reduce
reduce2(1:4,c(1,1,1),function(x,y,z) x+y-z)

## [1] 7

计算逻辑为第一次:1+2-1=2,第二次2+3-1=4,第三次4+4-1=7。

更多的purrr包中函数用法,可以参考:cheatsheet

以上就是浅析r语言中map与reduce的详细内容,更多关于r语言map与reduce的资料请关注其它相关文章!