欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

tensorboard可视化实例

程序员文章站 2022-03-03 19:46:25
tensorboard可视化实例“针对tensorflow1.x版本”e.g.1:对于一个简单的加法而言:import tensorflow as tfa = tf.constant([1.0,2.0,3.0],name='input1')b = tf.Variable(tf.random_uniform([3]),name='input2')add = tf.add_n([a,b],name='addOP')with tf.Session() as sess: sess.run(tf...

tensorboard可视化实例

“针对tensorflow1.x版本”
e.g.1:对于一个简单的加法而言:

import tensorflow as tf
a = tf.constant([1.0,2.0,3.0],name='input1') b = tf.Variable(tf.random_uniform([3]),name='input2') add = tf.add_n([a,b],name='addOP') with tf.Session() as sess: sess.run(tf.global_variables_initializer()) writer = tf.summary.FileWriter("./tflogs",sess.graph) print(sess.run(add)) writer.close() 

结果如图

tensorboard可视化实例

e.g.2:
输入层(1 个神经元),隐藏层(10 神经元),输出层(1 个神经元),来拟合一个二次函数曲线 y = x^2 − 0.5

 # -*- coding: utf-8 -*- import tensorflow as tf import numpy as np import matplotlib.pyplot as plt #构建满足一元二次方程的函数 x_data = np.linspace(-1, 1, 300)[:, np.newaxis] noise = np.random.normal(0, 0.05, x_data.shape) y_data = np.square(x_data) - 0.5 + noise # 看一下分布如何 plt.plot(x_data, y_data, 'ro') plt.show() 

tensorboard可视化实例构建网络模型,对于模型的参数加到summary中让其显示

def add_layer(inputs,in_size,out_size,n_layer,activation_function = None): # add one more layer and return the output of this layer layer_name = 'layer%s' % n_layer with tf.name_scope(layer_name): with tf.name_scope('weights'): Weights = tf.Variable(tf.random_normal([in_size,out_size]),name="W") tf.summary.histogram(layer_name+'/home/april/PycharmProjects/untitled/tflogs2/weights',Weights) with tf.name_scope('biases'): biases = tf.Variable(tf.zeros([1, out_size]) +0.1, name='b') tf.summary.histogram(layer_name + '/home/april/PycharmProjects/untitled/tflogs2/biases', biases) with tf.name_scope('Wx_plus_b'): Wx_plus_b = tf.add(tf.matmul(inputs,Weights), biases) if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b, ) tf.summary.histogram(layer_name + '/home/april/PycharmProjects/untitled/tflogs2/outputs', outputs) return outputs 

显示loss函数

# 构建隐藏层,假设隐藏层有 10 个神经元 l1 = add_layer(xs, 1, 10, n_layer=1, activation_function=tf.nn.relu) # 构建输出层,假设输出层和输入层一样,有 1 个神经元 prediction = add_layer(l1, 10, 1, n_layer=2, activation_function=None) # 构建损失函数 with tf.name_scope('loss'): loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), reduction_indices=[1])) tf.summary.scalar('loss', loss) train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) 

也要记录日志

# 初始化所有变量 init = tf.global_variables_initializer() sess = tf.Session() merged = tf.summary.merge_all() writer = tf.summary.FileWriter("/home/april/PycharmProjects/untitled/tfpics/", sess.graph) sess.run(init) for i in range(1000): # 训练 1000 次 sess.run(train_step, feed_dict={xs: x_data, ys: y_data}) if i % 50 == 0: # 每 50 次打印出一次损失值 result = sess.run(merged, feed_dict={xs: x_data, ys: y_data}) writer.add_summary(result, i) # print(sess.run(loss, feed_dict={xs: x_data, ys: y_data})) 

最后显示结果为
loss:
tensorboard可视化实例网络结构图:
tensorboard可视化实例
DISTRIBUTIONS 面板和 HISTOGRAMS 面板所用到的数据源相同,只是从不同的视角、不同的方式表征数据的情况。
tensorboard可视化实例

tensorboard可视化实例

本文地址:https://blog.csdn.net/zimengxueying/article/details/109032974