欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

MySQL源码分析--一条简单SQL的加锁分析

程序员文章站 2022-03-03 19:19:49
一、问题引入看如下一条sql语句:#tableT(idint,namevarchar(20)) deletefromTwhereid=10;MySQL在执行的过程中,是如何加锁呢?再看下面这条语句:select*fromTwhereid=10;那这条语句呢?其实这其中包含太多知识点了。要回答这两个问题,首先需要了解一些知识。二、相关知识回顾2.1 多版本并发控制在MySQL默认存储引擎InnoDB中,实现的是基......

零、环境准备

mysql版本:8.0.20

调试IDE:Visual Studio Code

一、问题引入

看如下一条sql语句:

# table T (id int, name varchar(20)) 

delete from T where id = 10;

MySQL在执行的过程中,是如何加锁呢?

再看下面这条语句:

select * from T where id = 5;

那这条语句呢?其实这其中包含太多知识点了。要回答这两个问题,首先需要了解一些知识。

 

二、相关知识回顾

 

2.1 多版本并发控制

在MySQL默认存储引擎InnoDB中,实现的是基于多版本的并发控制协议——MVCC(Multi-Version Concurrency Control)(注:与MVVC相对的,是基于锁的并发控制,Lock-Based Concurrency Control)。

其中MVCC最大的好处是:读不加锁,读写不冲突。在读多写少的OLTP应用中,读写不冲突是非常重要的,极大的提高了系统的并发性能,在现阶段,几乎所有的RDBMS,都支持MVCC。其实,MVCC就一句话总结:同一份数据临时保存多个版本的一种方式,进而实现并发控制。

 

2.2 当前读和快照读

在MVCC并发控制中,读操作可以分为两类:快照读与当前读。

  • 快照读(简单的select操作):读取的是记录中的可见版本(可能是历史版本),不用加锁。这你就知道第二个问题的答案了吧。
  • 当前读(特殊的select操作、insert、delete和update):读取的是记录中最新版本,并且当前读返回的记录都会加上锁,这样保证了了其他事务不会再并发修改这条记录。

 

2.3 聚集索引

也叫做聚簇索引。在InnoDB中,数据的组织方式就是聚簇索引:完整的记录,储存在主键索引中,通过主键索引,就可以获取记录中所有的列

 

2.4 最左前缀原则

也就是最左优先,这条原则针对的是组合索引和前缀索引,理解:

1、在MySQL中,进行条件过滤时,是按照向右匹配直到遇到范围查询(>,<,between,like)就停止匹配,比如说a = 1 and b = 2 and c > 3 and d = 4 如果建立(a, b, c, d)顺序的索引,d是用不到索引的,如果建立(a, b, d, c)索引就都会用上,其中a,b,d的顺序可以任意调整。

2、= 和 in 可以乱序,比如 a = 1 and b = 2 and c = 3 建立(a, b, c)索引可以任意顺序,MySQL的查询优化器会优化索引可以识别的形式。

 

2.5 两阶段锁

传统的RDMS加锁的一个原则,就是2PL(Two-Phase Locking,二阶段锁)。也就是说锁操作分为两个阶段:加锁阶段和解锁阶段,并且保证加锁阶段和解锁阶段不想交。也就是说在一个事务中,不管有多少条增删改,都是在加锁阶段加锁,在 commit 后,进入解锁阶段,才会全部解锁。

 

2.6 隔离级别

MySQL/InnoDB中,定义了四种隔离级别:

  • Read Uncommitted:可以读取未提交记录。此隔离级别不会使用。
  • Read Committed(RC):针对当前读,RC隔离级别保证了对读取到的记录加锁(记录锁),存在幻读现象。
  • Repeatable Read(RR):针对当前读,RR隔离级别保证对读取到的记录加锁(记录锁),同时保证对读取的范围加锁,新的满足查询条件的记录不能够插入(间隙锁),不存在幻读现象。
  • Serializable:从MVCC并发控制退化为基于锁的并发控制。不区别快照读和当前读,所有的读操作都是当前读,读加读锁(S锁),写加写锁(X锁)。在该隔离级别下,读写冲突,因此并发性能急剧下降,在MySQL/InnoDB中不建议使用。
  •  

2.7 Gap锁和Next-Key锁

在InnoDB中完整行锁包含三部分:

  • 记录锁(Record Lock):记录锁锁定索引中的一条记录。
  • 间隙锁(Gap Lock):间隙锁要么锁住索引记录中间的值,要么锁住第一个索引记录前面的值或最后一个索引记录后面的值。
  • Next-Key Lock:Next-Key锁时索引记录上的记录锁和在记录之前的间隙锁的组合。

 

三、案例分析过程

SQL1: select * from t1 where id = 10;(不加锁。因为MySQL是使用多版本并发控制的,读不加锁。)

SQL2: delete from t1 where id = 10;(需根据多种情况进行分析)

假设t1表上有索引,执行计划一定会选择使用索引进行过滤 (索引扫描),根据以下组合,来进行分析。

  • 组合一:id列是主键,RC隔离级别
  • 组合二:id列是二级唯一索引,RC隔离级别
  • 组合三:id列是二级非唯一索引,RC隔离级别
  • 组合四:id列上没有索引,RC隔离级别
  • 组合五:id列是主键,RR隔离级别
  • 组合六:id列是二级唯一索引,RR隔离级别
  • 组合七:id列是二级非唯一索引,RR隔离级别
  • 组合八:id列上没有索引,RR隔离级别
  • 组合九:Serializable隔离级别

注:在前面八种组合下,也就是RC,RR隔离级别下,SQL1:select操作均不加锁,采用的是快照读,因此在下面的讨论中就忽略了,主要讨论SQL2:delete操作的加锁。

 

组合一: id主键 + RC

id是主键,Read Committed隔离级别,给定SQL:delete from t1 where id = 10; 只需要将主键上,id = 10的记录加上X锁即可。如下图所示:

                                   MySQL源码分析--一条简单SQL的加锁分析

 

结论:id是主键时,此SQL只需要在id=10这条记录上加X锁即可。

示例:

#准备数据
mysql> create table t1 (id int,name varchar(10));

mysql> alter table t1 add primary key (id);

mysql> insert into t1 values(1,'a'),(4,'c'),(7,'b'),(10,'a'),(20,'d'),(30,'b');

mysql> select * from t1;
+----+------+
| id | name |
+----+------+
|  1 | a    |
|  4 | c    |
|  7 | b    |
| 10 | a    |
| 20 | d    |
| 30 | b    |
+----+------+
6 rows in set (0.00 sec)



会话1

mysql> select @@tx_isolation;
+----------------+
| @@tx_isolation |
+----------------+
| READ-COMMITTED |
+----------------+
1 row in set, 1 warning (0.00 sec)

mysql> begin;
Query OK, 0 rows affected (0.00 sec)

mysql> delete from t1 where id=10;
Query OK, 1 row affected (0.00 sec)


会话2

mysql> begin;
Query OK, 0 rows affected (0.00 sec)

mysql> select * from t1;
+----+------+
| id | name |
+----+------+
|  1 | a    |
|  4 | c    |
|  7 | b    |
| 10 | a    |
| 20 | d    |
| 30 | b    |
+----+------+
6 rows in set (0.00 sec)

mysql> update t1 set name='a1' where id=10;
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

mysql> update t1 set name='a1' where id=11;
Query OK, 0 rows affected (0.00 sec)
Rows matched: 0  Changed: 0  Warnings: 0

mysql> update t1 set name='a1' where id=7;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1  Changed: 1  Warnings: 0

从示例中可以看到会话1执行的delete操作,只对id=10加了X锁。

 

组合二:id唯一索引 + RC

id不是主键,而是一个Unique的二级索引键值。那么在RC隔离级别下,delete from t1 where id = 10; 需要加什么锁呢?见下图:

                                             MySQL源码分析--一条简单SQL的加锁分析

 

此组合中,id是unique索引,而主键是name列。此时,加锁的情况由于组合一有所不同。由于id是unique索引,因此delete语句会选择走id列的索引进行where条件的过滤,在找到id=10的记录后,首先会将unique索引上的id=10索引记录加上X锁,同时,会根据读取到的name列,回主键索引(聚簇索引),然后将聚簇索引上的name = ‘d’ 对应的主键索引项加X锁。

为什么聚簇索引上的记录也要加锁?试想一下,如果并发的一个SQL,是通过主键索引来更新:update t1 set id = 100 where name = 'd';此时,如果delete语句没有将主键索引上的记录加锁,那么并发的update就会感知不到delete语句的存在,违背了同一记录上的更新/删除需要串行执行的约束。

示例:

准备数据
mysql> create table t1 (id int,name varchar(10));
Query OK, 0 rows affected (0.06 sec)

mysql> ALTER TABLE test.t1 ADD UNIQUE INDEX idx_id (id);
Query OK, 0 rows affected (0.07 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> ALTER TABLE test.t1 ADD PRIMARY KEY (name);
Query OK, 0 rows affected (0.11 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> insert into t1 values(1,'f'),(2,'zz'),(3,'b'),(5,'a'),(6,'c'),(10,'d');
Query OK, 6 rows affected (0.01 sec)
Records: 6  Duplicates: 0  Warnings: 0


会话1

mysql> begin;
Query OK, 0 rows affected (0.01 sec)

mysql> delete from t1 where id=10;
Query OK, 1 row affected (0.00 sec)



会话2
mysql> begin;
Query OK, 0 rows affected (0.00 sec)

mysql> select * from t1;
+------+------+
| id   | name |
+------+------+
|    1 | f    |
|    2 | zz   |
|    3 | b    |
|    5 | a    |
|    6 | c    |
|   10 | d    |
+------+------+
6 rows in set (0.00 sec)

mysql> update t1 set id =100 where name='d';
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

mysql> update t1 set id =100 where name='c';
Query OK, 1 row affected (0.00 sec)
Rows matched: 1  Changed: 1  Warnings: 0

mysql> update t1 set id =101 where name='a';
Query OK, 1 row affected (0.01 sec)
Rows matched: 1  Changed: 1  Warnings: 0

结论:若id列是unique列,其上有unique索引。那么SQL需要加两个X锁,一个对应于id unique索引上的id = 10的记录,另一把锁对应于聚簇索引上的[name=’d’,id=10]的记录。

 

组合三:id非唯一索引 + RC

id列是一个普通索引。假设delete from t1 where id = 10; 语句,仍旧选择id列上的索引进行过滤where条件,那么此时会持有哪些锁?同样见下图:

                          MySQL源码分析--一条简单SQL的加锁分析

 

由上图可以看出,首先,id列索引上,满足id = 10查询的记录,均加上X锁。同时,这些记录对应的主键索引上的记录也加上X锁。与组合二的唯一区别,组合二最多只有一个满足条件的记录,而在组合三中会将所有满足条件的记录全部加上锁

结论:若id列上有非唯一索引,那么对应的所有满足SQL查询条件的记录,都会加上锁。同时,这些记录在主键索引上也会加上锁。

示例:

准备数据
mysql> create table t1 (id int,name varchar(10));

mysql> ALTER TABLE test.t1 ADD PRIMARY KEY (name);

mysql> alter table t1 add index idx_id (id);

mysql> insert into t1 values(2,'zz'),(6,'c'),(10,'b'),(10,'d'),(11,'f'),(15,'a');


会话1

mysql> begin;
Query OK, 0 rows affected (0.00 sec)

mysql> delete from t1 where id=10;
Query OK, 2 rows affected (0.00 sec)


会话2

mysql> select * from t1;
+------+------+
| id   | name |
+------+------+
|    2 | zz   |
|    6 | c    |
|   10 | b    |
|   10 | d    |
|   11 | f    |
|   15 | a    |
+------+------+
6 rows in set (0.00 sec)

mysql> begin;
Query OK, 0 rows affected (0.00 sec)

mysql> update t1 set id=11 where name='b';
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

mysql> update t1 set id=11 where name='d';
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

mysql> update t1 set id=11 where name='f';
Query OK, 0 rows affected (0.00 sec)
Rows matched: 1  Changed: 0  Warnings: 0

mysql> update t1 set id=11 where name='c';
Query OK, 1 row affected (0.00 sec)
Rows matched: 1  Changed: 1  Warnings: 0

 

组合四:id无索引+RC

相对于前面的组合,该组合相对特殊,因为id列上无索引,所以在 where id = 10 这个查询条件下,没法通过索引来过滤,因此只能全表扫描做过滤。对于该组合,MySQL又会进行怎样的加锁呢?看下图:

                       MySQL源码分析--一条简单SQL的加锁分析

 

       由于id列上无索引,因此只能走聚簇索引,进行全表扫描。由图可以看出满足条件的记录只有两条,但是,聚簇索引上的记录都会加上X锁。但在实际操作中,MySQL进行了改进,在进行过滤条件时,发现不满足条件后,会调用 unlock_row 方法,把不满足条件的记录放锁(违背了2PL原则)。这样做,保证了最后满足条件的记录加上锁,但是每条记录的加锁操作是不能省略的。

结论:若id列上没有索引,MySQL会走聚簇索引进行全表扫描过滤。由于是在MySQl Server层面进行的,因此每条记录无论是否满足条件,都会加上X锁,但是,为了效率考虑,MySQL在这方面进行了改进,在扫描过程中,若记录不满足过滤条件,会进行解锁操作。同时优化违背了2PL原则。

示例:

准备数据
mysql> create table t1 (id int,name varchar(10));

mysql> ALTER TABLE test.t1 ADD PRIMARY KEY (name);

mysql> insert into t1 values(5,'a'),(3,'b'),(10,'d'),(2,'f'),(10,'g'),(9,'zz');


会话1
mysql> begin;
Query OK, 0 rows affected (0.00 sec)

mysql> delete from t1 where id=10;
Query OK, 2 rows affected (0.00 sec)


会话2
mysql> select * from t1;
+------+------+
| id   | name |
+------+------+
|    5 | a    |
|    3 | b    |
|   10 | d    |
|    2 | f    |
|   10 | g    |
|    9 | zz   |
+------+------+
6 rows in set (0.00 sec)

mysql> begin;
Query OK, 0 rows affected (0.00 sec)

mysql> update t1 set id=6 where name='a';
Query OK, 1 row affected (0.01 sec)
Rows matched: 1  Changed: 1  Warnings: 0

mysql> update t1 set id=6 where name='b';
Query OK, 1 row affected (0.00 sec)
Rows matched: 1  Changed: 1  Warnings: 0

mysql> update t1 set id=6 where name='d';
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction
mysql> update t1 set id=6 where name='f';
Query OK, 1 row affected (0.00 sec)
Rows matched: 1  Changed: 1  Warnings: 0

mysql> update t1 set id=6 where name='g';
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

mysql> update t1 set id=6 where name='zz';
Query OK, 1 row affected (0.00 sec)
Rows matched: 1  Changed: 1  Warnings: 0

mysql> update t1 set id=6 where name='zzf';
Query OK, 0 rows affected (0.00 sec)
Rows matched: 0  Changed: 0  Warnings: 0


实验结果与推倒的结论不一致,

实验结果看出只锁住了id=10的两行。

 

组合五:id主键+RR

id列是主键列,Repeatable Read隔离级别,针对delete from t1 where id = 10; 这条SQL,加锁与组合一:”id主键 + RC“一致。

结论:id是主键是,此SQL语句只需要在id = 10这条记录上加上X锁即可。

示例:

mysql> create table t1 (id int,name varchar(10));

mysql> alter table t1 add primary key (id);

mysql> insert into t1 values(1,'a'),(4,'c'),(7,'b'),(10,'a'),(20,'d'),(30,'b');

mysql> select * from t1;
+----+------+
| id | name |
+----+------+
|  1 | a    |
|  4 | c    |
|  7 | b    |
| 10 | a    |
| 20 | d    |
| 30 | b    |
+----+------+
6 rows in set (0.00 sec)

mysql> select @@tx_isolation;
+-----------------+
| @@tx_isolation  |
+-----------------+
| REPEATABLE-READ |
+-----------------+
1 row in set, 1 warning (0.00 sec)


会话1

mysql> begin;
Query OK, 0 rows affected (0.01 sec)

mysql> delete from t1 where id=10;
Query OK, 1 row affected (0.00 sec)



会话2

mysql> select * from t1;
+----+------+
| id | name |
+----+------+
|  1 | a    |
|  4 | c    |
|  7 | b    |
| 10 | a    |
| 20 | d    |
| 30 | b    |
+----+------+
6 rows in set (0.00 sec)

mysql> update t1 set name='a1' where id=10;
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

mysql> update t1 set name='a1' where id=11;
Query OK, 0 rows affected (0.00 sec)
Rows matched: 0  Changed: 0  Warnings: 0

mysql> update t1 set name='a1' where id=7;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1  Changed: 1  Warnings: 0

 

组合六:id唯一索引+RR

id唯一索引 + RR的加锁与id唯一索引,RC一致。两个X锁,id唯一索引满足条件的记录上一个,对应的聚簇索引上的记录一个。

示例:

准备数据
mysql> create table t1 (id int,name varchar(10));

mysql> ALTER TABLE test.t1 ADD UNIQUE INDEX idx_id (id);

mysql> ALTER TABLE test.t1 ADD PRIMARY KEY (name);

mysql> insert into t1 values(1,'f'),(2,'zz'),(3,'b'),(5,'a'),(6,'c'),(10,'d');


会话1

mysql> begin;
Query OK, 0 rows affected (0.00 sec)

mysql> delete from t1 where id=10;
Query OK, 1 row affected (0.01 sec)


会话2

mysql> begin;
Query OK, 0 rows affected (0.00 sec)

mysql> select * from t1;
+------+------+
| id   | name |
+------+------+
|    1 | f    |
|    2 | zz   |
|    3 | b    |
|    5 | a    |
|    6 | c    |
|   10 | d    |
+------+------+
6 rows in set (0.00 sec)

mysql> update t1 set id =100 where name='d';
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

mysql> update t1 set id =100 where name='c';
Query OK, 1 row affected (0.00 sec)
Rows matched: 1  Changed: 1  Warnings: 0

mysql> update t1 set id =101 where name='a';
Query OK, 1 row affected (0.00 sec)
Rows matched: 1  Changed: 1  Warnings: 0

 

组合七:id不唯一索引+RR

在组合一到组合四中,隔离级别是Read Committed下,会出现幻读情况,但是在该组合Repeatable Read级别下,不会出现幻读情况,这是怎么回事呢?而MySQL又是如何给上述语句加锁呢?看下图:

                                    MySQL源码分析--一条简单SQL的加锁分析

 

      该组合和组合三看起来很相似,但差别很大,在该组合中加入了一个间隙锁(Gap锁)。这个Gap锁就是相对于RC级别下,RR级别下不会出现幻读情况的关键。实质上,Gap锁不是针对于记录本身的,而是记录之间的Gap。所谓幻读,就是同一事务下,连续进行多次当前读,且读取一个范围内的记录(包括直接查询所有记录结果或者做聚合统计),发现结果不一致(标准档案一般指记录增多, 记录的减少应该也算是幻读)。

      那么该如何解决这个问题呢?如何保证多次当前读返回一致的记录,那么就需要在多个当前读之间,其他事务不会插入新的满足条件的记录并提交。为了实现该结果,Gap锁就应运而生。

      如图所示,有些位置可以插入新的满足条件的记录,考虑到B+树的有序性,满足条件的记录一定是具有连续性的。因此会在 [4, b], [10, c], [10, d], [20, e] 之间加上Gap锁。

      Insert操作时,如insert(10, aa),首先定位到 [4, b], [10, c]间,然后插入在插入之前,会检查该Gap是否加锁了,如果被锁上了,则Insert不能加入记录。因此通过第一次当前读,会把满足条件的记录加上X锁,还会加上三把Gap锁,将可能插入满足条件记录的3个Gap锁上,保证后续的Insert不能插入新的满足 id = 10 的记录,也就解决了幻读问题

      而在组合五,组合六中,同样是RR级别,但是不用加上Gap锁,在组合五中id是主键,组合六中id是Unique键,都能保证唯一性。一个等值查询,最多只能返回一条满足条件的记录,而且新的相同取值的记录是无法插入的。

结论:在RR隔离级别下,id列上有非唯一索引,对于上述的SQL语句;首先,通过id索引定位到第一条满足条件的记录,给记录加上X锁,并且给Gap加上Gap锁,然后在主键聚簇索引上满足相同条件的记录加上X锁,然后返回;之后读取下一条记录重复进行。直至第一条出现不满足条件的记录,此时,不需要给记录加上X锁,但是需要给Gap加上Gap锁,最后返回结果。

示例:

准备数据
mysql> create table t1 (id int,name varchar(10));

mysql> ALTER TABLE test.t1 ADD PRIMARY KEY (name);

mysql> alter table t1 add index idx_id (id);

mysql> insert into t1 values(1,'a'),(4,'b'),(10,'c'),(20,'e'),(10,'d');


会话1

mysql> begin;
Query OK, 0 rows affected (0.00 sec)

mysql> delete from t1 where id=10;
Query OK, 2 rows affected (0.00 sec)


会话2

mysql> select * from t1;
+------+------+
| id   | name |
+------+------+
|    1 | a    |
|    4 | b    |
|   10 | c    |
|   10 | d    |
|   20 | e    |
+------+------+
5 rows in set (0.00 sec)

mysql> begin;
Query OK, 0 rows affected (0.00 sec)

mysql> insert into t1 values(6,'aa');
Query OK, 1 row affected (0.00 sec)
mysql> insert into t1 values(6,'bb');
Query OK, 1 row affected (0.01 sec)

mysql> insert into t1 values(6,'cc');
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction
mysql> insert into t1 values(7,'cc');
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction
mysql> insert into t1 values(8,'cc');
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction
mysql> insert into t1 values(9,'cc');
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction
mysql> insert into t1 values(10,'cc');
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction
mysql> insert into t1 values(11,'cc');
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

mysql> insert into t1 values(11,'ff');
Query OK, 1 row affected (0.00 sec)
mysql> insert into t1 values(11,'g');
Query OK, 1 row affected (0.00 sec)

 

组合八:id无索引+RR

该组合中,id列上无索引,只能进行全表扫描,那么该如何加锁,看下图:

             MySQL源码分析--一条简单SQL的加锁分析

 

        如图,可以看出这是一个很恐怖的事情,全表每条记录要加X锁,每个Gap加上Gap锁,如果表上存在大量数据时,又是什么情景呢?这种情况下,这个表,除了不加锁的快照读,其他任何加锁的并发SQL,均不能执行,不能更新,删除,插入,这样,全表锁死。

当然,和组合四一样,MySQL进行了优化,就是semi-consistent read。semi-consistent read开启的情况下,对于不满足条件的记录,MySQL会提前放锁,同时Gap锁也会释放。而semi-consistent read是如何触发:要么在Read Committed隔离级别下;要么在Repeatable Read隔离级别下,设置了 innodb_locks_unsafe_for_binlog 参数。

示例:

准备数据
mysql> create database cgwtest;
mysql> CREATE TABLE `t` (
       `id` int(11) NOT NULL AUTO_INCREMENT,
       `d` int(11) DEFAULT NULL,
       PRIMARY KEY (`id`)
     ) ENGINE=InnoDB;

//mysql> insert into t1 values(5,'a'),(3,'b'),(10,'d'),(2,'f'),(10,'g'),(9,'zz');
mysql> insert into t values(1,1),(5,5),(10,10);

会话1
mysql> begin;
Query OK, 0 rows affected (0.00 sec)

mysql> delete from t where d=5;
Query OK, 1 rows affected (0.00 sec)


会话2
mysql> begin;
Query OK, 0 rows affected (0.00 sec)

mysql> select * from t;
+----+------+
| id | d    |
+----+------+
|  1 |    1 |
|  5 |    5 |
| 10 |   10 |
+----+------+
3 rows in set (0.00 sec)

mysql> insert into t values(2,2);
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

 

(注:以下流程和源码是主流程和重点关注的点!)

1,delete源码实现过程:

                                      MySQL源码分析--一条简单SQL的加锁分析

/* Basic lock modes */
enum lock_mode {
  LOCK_IS = 0,          /* intention shared */
  LOCK_IX,              /* intention exclusive */
  LOCK_S,               /* shared */
  LOCK_X,               /* exclusive */
  LOCK_AUTO_INC,        /* locks the auto-inc counter of a table
                        in an exclusive mode */
  LOCK_NONE,            /* this is used elsewhere to note consistent read */
  LOCK_NUM = LOCK_NONE, /* number of lock modes */
  LOCK_NONE_UNSET = 255
};

 

 ut_ad(gap_mode == LOCK_ORDINARY || gap_mode == LOCK_GAP ||
        gap_mode == LOCK_REC_NOT_GAP);
        
 #define ut_ad(EXPR) ut_a(EXPR)
/** Debug statement. Does nothing unless UNIV_DEBUG is defined. */调试断言

核心方法:

/** Sets a lock on a record.
mostly due to we cannot reposition a record in R-Tree (with the
nature of splitting)
@param[in]  pcur    cursor
@param[in]  rec   record
@param[in]  index   index
@param[in]  offsets   rec_get_offsets(rec, index)
@param[in]  sel_mode  select mode: SELECT_ORDINARY,
                                SELECT_SKIP_LOKCED, or SELECT_NO_WAIT
@param[in]  mode    lock mode
@param[in]  type    LOCK_ORDINARY, LOCK_GAP, or LOC_REC_NOT_GAP
@param[in]  thr   query thread
@param[in]  mtr   mtr
@return DB_SUCCESS, DB_SUCCESS_LOCKED_REC, or error code */
UNIV_INLINE
dberr_t sel_set_rec_lock(btr_pcur_t *pcur, const rec_t *rec,
                         dict_index_t *index, const ulint *offsets,
                         select_mode sel_mode, ulint mode, ulint type,
                         que_thr_t *thr, mtr_t *mtr) {
  trx_t *trx;
  dberr_t err = DB_SUCCESS;
  const buf_block_t *block;
  block = btr_pcur_get_block(pcur);
  trx = thr_get_trx(thr);
  trx_mutex_enter(trx);
  ut_ad(trx_can_be_handled_by_current_thread(trx));
  bool too_many_locks = (UT_LIST_GET_LEN(trx->lock.trx_locks) > 10000);
  trx_mutex_exit(trx);

  if (too_many_locks) {
    if (buf_LRU_buf_pool_running_out()) {
      return (DB_LOCK_TABLE_FULL);
    }
  }

  if (index->is_clustered()) {
    err = lock_clust_rec_read_check_and_lock(
        lock_duration_t::REGULAR, block, rec, index, offsets, sel_mode,
        static_cast<lock_mode>(mode), type, thr);
  } else {
    if (dict_index_is_spatial(index)) {
      if (type == LOCK_GAP || type == LOCK_ORDINARY) {
        ut_ad(0);
        ib::error(ER_IB_MSG_1026) << "Incorrectly request GAP lock "
                                     "on RTree";
        return (DB_SUCCESS);
      }
      err = sel_set_rtr_rec_lock(pcur, rec, index, offsets, sel_mode, mode,
                                 type, thr, mtr);
    } else {
      err = lock_sec_rec_read_check_and_lock(
          lock_duration_t::REGULAR, block, rec, index, offsets, sel_mode,
          static_cast<lock_mode>(mode), type, thr);
    }
  }

  return (err);
}
dberr_t lock_clust_rec_read_check_and_lock(
    const lock_duration_t duration, const buf_block_t *block, const rec_t *rec,
    dict_index_t *index, const ulint *offsets, const select_mode sel_mode,
    const lock_mode mode, const ulint gap_mode, que_thr_t *thr) {
  dberr_t err;
  ulint heap_no;
  ut_ad(rec_offs_validate(rec, index, offsets));

  if (srv_read_only_mode || index->table->is_temporary()) {
    return (DB_SUCCESS);
  }

  heap_no = page_rec_get_heap_no(rec);

  if (heap_no != PAGE_HEAP_NO_SUPREMUM) {
    lock_rec_convert_impl_to_expl(block, rec, index, offsets);//隐示锁转显示锁
  }

  DEBUG_SYNC_C("after_lock_clust_rec_read_check_and_lock_impl_to_expl");
  lock_mutex_enter();//系统锁

  if (duration == lock_duration_t::AT_LEAST_STATEMENT) {
    lock_protect_locks_till_statement_end(thr);
  }
  ut_ad(mode != LOCK_X ||
        lock_table_has(thr_get_trx(thr), index->table, LOCK_IX));
  ut_ad(mode != LOCK_S ||
        lock_table_has(thr_get_trx(thr), index->table, LOCK_IS));

  err = lock_rec_lock(false, sel_mode, mode | gap_mode, block, heap_no, index,
                      thr);
  MONITOR_INC(MONITOR_NUM_RECLOCK_REQ);
  lock_mutex_exit();
  ut_ad(lock_rec_queue_validate(false, block, rec, index, offsets));
  DEBUG_SYNC_C("after_lock_clust_rec_read_check_and_lock");
  ut_ad(err == DB_SUCCESS || err == DB_SUCCESS_LOCKED_REC ||
        err == DB_LOCK_WAIT || err == DB_DEADLOCK || err == DB_SKIP_LOCKED ||
        err == DB_LOCK_NOWAIT);
  return (err);
}
/** Tries to lock the specified record in the mode requested. If not immediately
possible, enqueues a waiting lock request. This is a low-level function
which does NOT look at implicit locks! Checks lock compatibility within
explicit locks. This function sets a normal next-key lock, or in the case
of a page supremum record, a gap type lock.
@param[in]  impl    if true, no lock is set if no wait is
                                necessary: we assume that the caller will
                                set an implicit lock
@param[in]  sel_mode  select mode: SELECT_ORDINARY,
                                SELECT_SKIP_LOCKED, or SELECT_NO_WAIT
@param[in]  mode    lock mode: LOCK_X or LOCK_S possibly ORed to
                                either LOCK_GAP or LOCK_REC_NOT_GAP
@param[in]  block   buffer block containing the record
@param[in]  heap_no   heap number of record
@param[in]  index   index of record
@param[in,out]  thr   query thread
@return DB_SUCCESS, DB_SUCCESS_LOCKED_REC, DB_LOCK_WAIT, DB_DEADLOCK,
DB_SKIP_LOCKED, or DB_LOCK_NOWAIT */
static dberr_t lock_rec_lock(bool impl, select_mode sel_mode, ulint mode,
                             const buf_block_t *block, ulint heap_no,
                             dict_index_t *index, que_thr_t *thr) {
  ut_ad(lock_mutex_own());
  ut_ad(!srv_read_only_mode);
  /* Implicit locks are equivalent to LOCK_X|LOCK_REC_NOT_GAP, so we can omit
  creation of explicit lock only if the requested mode was LOCK_REC_NOT_GAP */
  ut_ad(!impl || ((mode & LOCK_REC_NOT_GAP) == LOCK_REC_NOT_GAP));
  /* We try a simplified and faster subroutine for the most
  common cases */
  switch (lock_rec_lock_fast(impl, mode, block, heap_no, index, thr)) {
    case LOCK_REC_SUCCESS
      return (DB_SUCCESS);
    case LOCK_REC_SUCCESS_CREATED:
      return (DB_SUCCESS_LOCKED_REC);
    case LOCK_REC_FAIL:
      return (
          lock_rec_lock_slow(impl, sel_mode, mode, block, heap_no, index, thr));
    default:
      ut_error;
  }
}

 

delete语句调用堆栈:

lock_rec_lock(bool impl, select_mode sel_mode, ulint mode, const buf_block_t * block, ulint heap_no, dict_index_t * index, que_thr_t * thr) (\root\mysql-8.0.20\storage\innobase\lock\lock0lock.cc:1667)
lock_clust_rec_read_check_and_lock(const lock_duration_t duration, const buf_block_t * block, const rec_t * rec, dict_index_t * index, const ulint * offsets, const select_mode sel_mode, const lock_mode mode, const ulint gap_mode, que_thr_t * thr) (\root\mysql-8.0.20\storage\innobase\lock\lock0lock.cc:5701)
sel_set_rec_lock(btr_pcur_t * pcur, const rec_t * rec, dict_index_t * index, const ulint * offsets, select_mode sel_mode, ulint mode, ulint type, que_thr_t * thr, mtr_t * mtr) (\root\mysql-8.0.20\storage\innobase\row\row0sel.cc:1184)
row_search_mvcc(unsigned char * buf, page_cur_mode_t mode, row_prebuilt_t * prebuilt, ulint match_mode, const ulint direction) (\root\mysql-8.0.20\storage\innobase\row\row0sel.cc:5214)
ha_innobase::general_fetch(ha_innobase * const this, uchar * buf, uint direction, uint match_mode) (\root\mysql-8.0.20\storage\innobase\handler\ha_innodb.cc:9949)
ha_innobase::rnd_next(ha_innobase * const this, uchar * buf) (\root\mysql-8.0.20\storage\innobase\handler\ha_innodb.cc:10226)
handler::ha_rnd_next(handler * const this, uchar * buf) (\root\mysql-8.0.20\sql\handler.cc:2966)
TableScanIterator::Read(TableScanIterator * const this) (\root\mysql-8.0.20\sql\records.cc:423)
Sql_cmd_delete::delete_from_single_table(Sql_cmd_delete * const this, THD * thd) (\root\mysql-8.0.20\sql\sql_delete.cc:503)
Sql_cmd_delete::execute_inner(Sql_cmd_delete * const this, THD * thd) (\root\mysql-8.0.20\sql\sql_delete.cc:823)
Sql_cmd_dml::execute(Sql_cmd_dml * const this, THD * thd) (\root\mysql-8.0.20\sql\sql_select.cc:725)
mysql_execute_command(THD * thd, bool first_level) (\root\mysql-8.0.20\sql\sql_parse.cc:3471)
mysql_parse(THD * thd, Parser_state * parser_state) (\root\mysql-8.0.20\sql\sql_parse.cc:5306)
dispatch_command(THD * thd, const COM_DATA * com_data, enum_server_command command) (\root\mysql-8.0.20\sql\sql_parse.cc:1776)
do_command(THD * thd) (\root\mysql-8.0.20\sql\sql_parse.cc:1274)
handle_connection(void * arg) (\root\mysql-8.0.20\sql\conn_handler\connection_handler_per_thread.cc:302)
pfs_spawn_thread(void * arg) (\root\mysql-8.0.20\storage\perfschema\pfs.cc:2854)
libpthread.so.0!start_thread (未知源:0)
libc.so.6!clone (未知源:0)

执行删除:

row_upd_clust_step(upd_node_t * node, que_thr_t * const thr) (\root\mysql-8.0.20\storage\innobase\row\row0upd.cc:2982)
row_upd(upd_node_t * node, que_thr_t * thr) (\root\mysql-8.0.20\storage\innobase\row\row0upd.cc:3175)
row_upd_step(que_thr_t * thr) (\root\mysql-8.0.20\storage\innobase\row\row0upd.cc:3306)
row_update_for_mysql_using_upd_graph(const unsigned char * mysql_rec, row_prebuilt_t * prebuilt) (\root\mysql-8.0.20\storage\innobase\row\row0mysql.cc:2347)
row_update_for_mysql(const unsigned char * mysql_rec, row_prebuilt_t * prebuilt) (\root\mysql-8.0.20\storage\innobase\row\row0mysql.cc:2443)
ha_innobase::delete_row(ha_innobase * const this, const uchar * record) (\root\mysql-8.0.20\storage\innobase\handler\ha_innodb.cc:9374)
handler::ha_delete_row(handler * const this, const uchar * buf) (\root\mysql-8.0.20\sql\handler.cc:7894)
Sql_cmd_delete::delete_from_single_table(Sql_cmd_delete * const this, THD * thd) (\root\mysql-8.0.20\sql\sql_delete.cc:528)
Sql_cmd_delete::execute_inner(Sql_cmd_delete * const this, THD * thd) (\root\mysql-8.0.20\sql\sql_delete.cc:823)
Sql_cmd_dml::execute(Sql_cmd_dml * const this, THD * thd) (\root\mysql-8.0.20\sql\sql_select.cc:725)
mysql_execute_command(THD * thd, bool first_level) (\root\mysql-8.0.20\sql\sql_parse.cc:3471)
mysql_parse(THD * thd, Parser_state * parser_state) (\root\mysql-8.0.20\sql\sql_parse.cc:5306)
dispatch_command(THD * thd, const COM_DATA * com_data, enum_server_command command) (\root\mysql-8.0.20\sql\sql_parse.cc:1776)
do_command(THD * thd) (\root\mysql-8.0.20\sql\sql_parse.cc:1274)
handle_connection(void * arg) (\root\mysql-8.0.20\sql\conn_handler\connection_handler_per_thread.cc:302)
pfs_spawn_thread(void * arg) (\root\mysql-8.0.20\storage\perfschema\pfs.cc:2854)
libpthread.so.0!start_thread (未知源:0)
libc.so.6!clone (未知源:0)

 

2,insert源码实现过程:

                                                            MySQL源码分析--一条简单SQL的加锁分析

核心方法:

/** Checks if some other transaction has a conflicting explicit lock request
 in the queue, so that we have to wait.
 @return lock or NULL */
static const lock_t *lock_rec_other_has_conflicting(
    ulint mode,               /*!< in: LOCK_S or LOCK_X,
                              possibly ORed to LOCK_GAP or
                              LOC_REC_NOT_GAP,
                              LOCK_INSERT_INTENTION */
    const buf_block_t *block, /*!< in: buffer block containing
                              the record */
    ulint heap_no,            /*!< in: heap number of the record */
    const trx_t *trx)         /*!< in: our transaction */
{
  ut_ad(lock_mutex_own());
  ut_ad(!(mode & ~(ulint)(LOCK_MODE_MASK | LOCK_GAP | LOCK_REC_NOT_GAP |
                          LOCK_INSERT_INTENTION)));
  ut_ad(!(mode & LOCK_PREDICATE));
  ut_ad(!(mode & LOCK_PRDT_PAGE));

  RecID rec_id{block, heap_no};
  const bool is_supremum = rec_id.is_supremum();

  return (Lock_iter::for_each(rec_id, [=](const lock_t *lock) {
    return (!(lock_rec_has_to_wait(trx, mode, lock, is_supremum)));
  }));
}

 

/** Iterate over all the locks on a specific row
  @param[in]	rec_id		Iterate over locks on this row
  @param[in]	f		Function to call for each entry
  @param[in]	hash_table	The hash table to iterate over
  @return lock where the callback returned false */
  template <typename F>
  static const lock_t *for_each(const RecID &rec_id, F &&f,
                                hash_table_t *hash_table = lock_sys->rec_hash) {
    ut_ad(lock_mutex_own());

    auto list = hash_get_nth_cell(hash_table,
                                  hash_calc_hash(rec_id.m_fold, hash_table));

    for (auto lock = first(list, rec_id); lock != nullptr;
         lock = advance(rec_id, lock)) {
      ut_ad(lock->is_record_lock());

      if (!std::forward<F>(f)(lock)) {
        return (lock);
      }
    }

    return (nullptr);
  }
};
/** Checks if a lock request for a new lock has to wait for request lock2.
 @return true if new lock has to wait for lock2 to be removed */
UNIV_INLINE
bool lock_rec_has_to_wait(
    const trx_t *trx,    /*!< in: trx of new lock */
    ulint type_mode,     /*!< in: precise mode of the new lock
                       to set: LOCK_S or LOCK_X, possibly
                       ORed to LOCK_GAP or LOCK_REC_NOT_GAP,
                       LOCK_INSERT_INTENTION */
    const lock_t *lock2, /*!< in: another record lock; NOTE that
                         it is assumed that this has a lock bit
                         set on the same record as in the new
                         lock we are setting */
    bool lock_is_on_supremum)
/*!< in: true if we are setting the
lock on the 'supremum' record of an
index page: we know then that the lock
request is really for a 'gap' type lock */
{
  ut_ad(trx && lock2);
  ut_ad(lock_get_type_low(lock2) == LOCK_REC);

  const bool is_hp = trx_is_high_priority(trx);
  if (trx != lock2->trx &&
      !lock_mode_compatible(static_cast<lock_mode>(LOCK_MODE_MASK & type_mode),
                            lock_get_mode(lock2))) {
    /* If our trx is High Priority and the existing lock is WAITING and not
        high priority, then we can ignore it. */
    if (is_hp && lock2->is_waiting() && !trx_is_high_priority(lock2->trx)) {
      return (false);
    }

    /* We have somewhat complex rules when gap type record locks
    cause waits */

    if ((lock_is_on_supremum || (type_mode & LOCK_GAP)) &&
        !(type_mode & LOCK_INSERT_INTENTION)) {
      /* Gap type locks without LOCK_INSERT_INTENTION flag
      do not need to wait for anything. This is because
      different users can have conflicting lock types
      on gaps. */

      return (false);
    }

    if (!(type_mode & LOCK_INSERT_INTENTION) && lock_rec_get_gap(lock2)) {
      /* Record lock (LOCK_ORDINARY or LOCK_REC_NOT_GAP
      does not need to wait for a gap type lock */

      return (false);
    }

    if ((type_mode & LOCK_GAP) && lock_rec_get_rec_not_gap(lock2)) {
      /* Lock on gap does not need to wait for
      a LOCK_REC_NOT_GAP type lock */

      return (false);
    }

    if (lock_rec_get_insert_intention(lock2)) {
      /* No lock request needs to wait for an insert
      intention lock to be removed. This is ok since our
      rules allow conflicting locks on gaps. This eliminates
      a spurious deadlock caused by a next-key lock waiting
      for an insert intention lock; when the insert
      intention lock was granted, the insert deadlocked on
      the waiting next-key lock.

      Also, insert intention locks do not disturb each
      other. */
      return (false);
    }
    return (true);
  }
  return (false);
}

 

调用堆栈

lock_rec_other_has_conflicting(ulint mode, const buf_block_t * block, ulint heap_no, const trx_t * trx) (\root\mysql-8.0.20\storage\innobase\lock\lock0lock.cc:805)
lock_rec_insert_check_and_lock(ulint flags, const rec_t * rec, buf_block_t * block, dict_index_t * index, que_thr_t * thr, mtr_t * mtr, ulint * inherit) (\root\mysql-8.0.20\storage\innobase\lock\lock0lock.cc:5291)
btr_cur_ins_lock_and_undo(ulint flags, btr_cur_t * cursor, dtuple_t * entry, que_thr_t * thr, mtr_t * mtr, ulint * inherit) (\root\mysql-8.0.20\storage\innobase\btr\btr0cur.cc:2621)
btr_cur_optimistic_insert(ulint flags, btr_cur_t * cursor, ulint ** offsets, mem_heap_t ** heap, dtuple_t * entry, rec_t ** rec, big_rec_t ** big_rec, que_thr_t * thr, mtr_t * mtr) (\root\mysql-8.0.20\storage\innobase\btr\btr0cur.cc:2841)
row_ins_clust_index_entry_low(uint32_t flags, ulint mode, dict_index_t * index, ulint n_uniq, dtuple_t * entry, que_thr_t * thr, bool dup_chk_only) (\root\mysql-8.0.20\storage\innobase\row\row0ins.cc:2515)
row_ins_clust_index_entry(dict_index_t * index, dtuple_t * entry, que_thr_t * thr, bool dup_chk_only) (\root\mysql-8.0.20\storage\innobase\row\row0ins.cc:3095)
row_ins_index_entry(dict_index_t * index, dtuple_t * entry, uint32_t & multi_val_pos, que_thr_t * thr) (\root\mysql-8.0.20\storage\innobase\row\row0ins.cc:3286)
row_ins_index_entry_step(ins_node_t * node, que_thr_t * thr) (\root\mysql-8.0.20\storage\innobase\row\row0ins.cc:3424)
row_ins(ins_node_t * node, que_thr_t * thr) (\root\mysql-8.0.20\storage\innobase\row\row0ins.cc:3542)
row_ins_step(que_thr_t * thr) (\root\mysql-8.0.20\storage\innobase\row\row0ins.cc:3666)
row_insert_for_mysql_using_ins_graph(const unsigned char * mysql_rec, row_prebuilt_t * prebuilt) (\root\mysql-8.0.20\storage\innobase\row\row0mysql.cc:1585)
row_insert_for_mysql(const unsigned char * mysql_rec, row_prebuilt_t * prebuilt) (\root\mysql-8.0.20\storage\innobase\row\row0mysql.cc:1715)
ha_innobase::write_row(ha_innobase * const this, uchar * record) (\root\mysql-8.0.20\storage\innobase\handler\ha_innodb.cc:8530)
handler::ha_write_row(handler * const this, uchar * buf) (\root\mysql-8.0.20\sql\handler.cc:7837)
write_record(THD * thd, TABLE * table, COPY_INFO * info, COPY_INFO * update) (\root\mysql-8.0.20\sql\sql_insert.cc:2111)
Sql_cmd_insert_values::execute_inner(Sql_cmd_insert_values * const this, THD * thd) (\root\mysql-8.0.20\sql\sql_insert.cc:621)
Sql_cmd_dml::execute(Sql_cmd_dml * const this, THD * thd) (\root\mysql-8.0.20\sql\sql_select.cc:725)
mysql_execute_command(THD * thd, bool first_level) (\root\mysql-8.0.20\sql\sql_parse.cc:3471)
mysql_parse(THD * thd, Parser_state * parser_state) (\root\mysql-8.0.20\sql\sql_parse.cc:5306)
dispatch_command(THD * thd, const COM_DATA * com_data, enum_server_command command) (\root\mysql-8.0.20\sql\sql_parse.cc:1776)

结论:在Repeatable Read隔离级别下,如果进行全表扫描的当前读,那么会锁上表上的所有记录,并且所有的Gap加上Gap锁,杜绝所有的 delete/update/insert 操作。当然在MySQL中,可以触发 semi-consistent read来缓解锁开销与并发影响,但是semi-consistent read本身也会带来其他的问题,不建议使用。

 

组合九:Serializable

在最后组合中,对于上诉的删除SQL语句,加锁过程和组合八一致。但是,对于查询语句(比如select * from T1 where id = 10)来说,在RC,RR隔离级别下,都是快照读,不加锁。在Serializable隔离级别下,无论是查询语句也会加锁,也就是说快照读不存在了,MVCC降级为Lock-Based CC。

结论:在MySQL/InnoDB中,所谓的读不加锁,并不适用于所有的情况,而是和隔离级别有关。在Serializable隔离级别下,所有的操作都会加锁。

 

 

四、其它:

1. 数据库事务ACID特性

数据库事务的4个特性:

原子性(Atomic): 事务中的多个操作,不可分割,要么都成功,要么都失败; All or Nothing.

一致性(Consistency): 事务操作之后, 数据库所处的状态和业务规则是一致的; 比如a,b账户相互转账之后,总金额不变;

隔离性(Isolation): 多个事务之间就像是串行执行一样,不相互影响;

持久性(Durability): 事务提交后被持久化到永久存储.

2. 隔离性

其中 隔离性 分为了四种:

READ UNCOMMITTED:可以读取未提交的数据,未提交的数据称为脏数据,所以又称脏读。此时:幻读,不可重复读和脏读均允许;

READ COMMITTED:只能读取已经提交的数据;此时:允许幻读和不可重复读,但不允许脏读,所以RC隔离级别要求解决脏读;

REPEATABLE READ:同一个事务中多次执行同一个select,读取到的数据没有发生改变;此时:允许幻读,但不允许不可重复读和脏读,所以RR隔离级别要求解决不可重复读;

SERIALIZABLE: 幻读,不可重复读和脏读都不允许,所以serializable要求解决幻读;

3. 几个概念

脏读:可以读取未提交的数据。RC 要求解决脏读;

不可重复读:同一个事务中多次执行同一个select, 读取到的数据发生了改变(被其它事务update并且提交);

可重复读:同一个事务中多次执行同一个select, 读取到的数据没有发生改变(一般使用MVCC实现);RR各级级别要求达到可重复读的标准;

幻读:同一个事务中多次执行同一个select, 读取到的数据行发生改变。也就是行数减少或者增加了(被其它事务delete/insert并且提交)。SERIALIZABLE要求解决幻读问题;

这里一定要区分 不可重复读 和 幻读:

不可重复读的重点是修改:

同样的条件的select, 你读取过的数据, 再次读取出来发现值不一样了

幻读的重点在于新增或者删除:

同样的条件的select, 第1次和第2次读出来的记录数不一样

从结果上来看, 两者都是为多次读取的结果不一致。但如果你从实现的角度来看, 它们的区别就比较大:

对于前者, 在RC下只需要锁住满足条件的记录,就可以避免被其它事务修改,也就是 select for update, select in share mode; RR隔离下使用MVCC实现可重复读;

对于后者, 要锁住满足条件的记录及所有这些记录之间的gap,也就是需要 gap lock。

而ANSI SQL标准没有从隔离程度进行定义,而是定义了事务的隔离级别,同时定义了不同事务隔离级别解决的三大并发问题:

Isolation Level

Dirty Read

Unrepeatable Read

Phantom Read

Read UNCOMMITTED

YES

YES

YES

READ COMMITTED

NO

YES

YES

READ REPEATABLE

NO

NO

YES

SERIALIZABLE

NO

NO

NO

4. 数据库的默认隔离级别

除了MySQL默认采用RR隔离级别之外,其它几大数据库都是采用RC隔离级别。

但是他们的实现也是极其不一样的。Oracle仅仅实现了RC 和 SERIALIZABLE隔离级别。默认采用RC隔离级别,解决了脏读。但是允许不可重复读和幻读。其SERIALIZABLE则解决了脏读、不可重复读、幻读。

MySQL的实现:MySQL默认采用RR隔离级别,SQL标准是要求RR解决不可重复读的问题,但是因为MySQL采用了gap lock,所以实际上MySQL的RR隔离级别也解决了幻读的问题。那么MySQL的SERIALIZABLE是怎么回事呢?其实MySQL的SERIALIZABLE采用了经典的实现方式,对读和写都加锁。

5. MySQL 中RC和RR隔离级别的区别

MySQL数据库中默认隔离级别为RR,但是实际情况是使用RC 和 RR隔离级别的都不少。好像淘宝、网易都是使用的 RC 隔离级别。那么在MySQL中 RC 和 RR有什么区别呢?我们该如何选择呢?为什么MySQL将RR作为默认的隔离级别呢?

5.1 RC 与 RR 在锁方面的区别

1> 显然 RR 支持 gap lock(next-key lock),而RC则没有gap lock。因为MySQL的RR需要gap lock来解决幻读问题。而RC隔离级别则是允许存在不可重复读和幻读的。所以RC的并发一般要好于RR;

2> RC 隔离级别,通过 where 条件过滤之后,不符合条件的记录上的行锁,会释放掉(虽然这里破坏了“两阶段加锁原则”);但是RR隔离级别,即使不符合where条件的记录,也不会是否行锁和gap lock;所以从锁方面来看,RC的并发应该要好于RR;另外 insert into t select ... from s where 语句在s表上的锁也是不一样的。

2563 2048 + 512 + 3

 

本文地址:https://blog.csdn.net/xiaomucgwlmx/article/details/108590259

相关标签: MySQL 数据库