欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

HDU 4347 The Closest M Points

程序员文章站 2022-04-03 08:57:52
...

题目:点击打开链接

题意:求取一个点的m个最近的点

分析:kd树模板题。入门可参考https://blog.csdn.net/u013534123/article/details/80952174,代码细节可参考https://blog.csdn.net/HackerTom/article/details/78198767

代码:

#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize(4)
#pragma comment(linker, "/STACK:102400000,102400000")
#include<unordered_map>
#include<unordered_set>
#include<algorithm>
#include<iostream>
#include<fstream>
#include<complex>
#include<cstdlib>
#include<cstring>
#include<cassert>
#include<iomanip>
#include<string>
#include<cstdio>
#include<bitset>
#include<vector>
#include<cctype>
#include<cmath>
#include<ctime>
#include<stack>
#include<queue>
#include<deque>
#include<list>
#include<set>
#include<map>
using namespace std;
#define pt(a) cout<<a<<endl
#define debug test
#define mst(ss,b) memset((ss),(b),sizeof(ss))
#define rep(i,a,n) for (int i=a;i<=n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
#define ll long long
#define ull unsigned long long
#define pb push_back
#define mp make_pair
#define inf 0x3f3f3f3f
#define eps 1e-10
#define PI acos(-1.0)
typedef pair<int,int> PII;
const ll mod = 1e9+7;
const int N = 1e5+10;

ll gcd(ll p,ll q){return q==0?p:gcd(q,p%q);}
ll qp(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
int to[4][2]={{-1,0},{1,0},{0,-1},{0,1}};

int n,m,k,t,q,idx,ex[N<<2];
struct nd {
    int v[5];
    bool operator < (const nd &b) const {
        return v[idx]<b.v[idx];
    }
}kdt[N<<2],p[N],aim;

void build(int l,int r,int rt,int dep) {
    ex[rt]=1;
    ex[rt<<1]=ex[rt<<1|1]=0;
    idx=dep%k;
    int m=(l+r)>>1;
    nth_element(p+l,p+m,p+r+1);
    kdt[rt]=p[m];
    if(l<m) build(l,m-1,rt<<1,dep+1);
    if(r>m) build(m+1,r,rt<<1|1,dep+1);
}

typedef pair<int,nd> P;
priority_queue<P> pq;

void qy(int rt,int m,int dep) {
    if(!ex[rt]) return ;
    P now(0,kdt[rt]);
    rep(i,0,k-1) now.fi+=(aim.v[i]-kdt[rt].v[i])*(aim.v[i]-kdt[rt].v[i]);
    int d=dep%k;
    int lc=rt<<1,rc=rt<<1|1;
    if(aim.v[d]>=kdt[rt].v[d]) swap(lc,rc);
    if(ex[lc]) qy(lc,m,dep+1);
    int fd=0;
    if(pq.size()<m) {
        pq.push(now);
        fd=1;
    }else {
        if(now.fi<pq.top().fi) {
            pq.pop();
            pq.push(now);
        }
        if( (aim.v[d]-kdt[rt].v[d])*(aim.v[d]-kdt[rt].v[d]) < pq.top().fi ) fd=1;
    }
    if( ex[rc] && fd ) qy(rc,m,dep+1);
}

int main() {
    ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
    while(cin>>n>>k) {
        rep(i,0,n-1) rep(j,0,k-1) cin>>p[i].v[j];
        build(0,n-1,1,0);
        cin>>q;
        rep(i,1,q) {
            rep(j,0,k-1) cin>>aim.v[j];
            cin>>m;
            qy(1,m,0);
            int kk=0;
            while(!pq.empty()) p[kk++]=pq.top().se,pq.pop();
            cout<<"the closest "<<m<<" points are:"<<endl;
            for(int x=kk-1;x>=0;x--) {
                for(int y=0;y<k-1;y++) cout<<p[x].v[y]<<" ";
                cout<<p[x].v[k-1]<<endl;
            }
        }
    }
    return 0;
}