欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python numpy中multiply与*及matul 的区别说明

程序员文章站 2022-04-02 22:35:15
1、对于矩阵(matrix)而言multiply是对应元素相乘,而 * 、np.matmul() 函数 与 np.dot()函数 相当于矩阵乘法(矢量积),对应的列数和行数必须满足乘法规则;如果希望以...

1、对于矩阵(matrix)而言

multiply是对应元素相乘,而 * 、np.matmul() 函数 与 np.dot()函数 相当于矩阵乘法(矢量积),对应的列数和行数必须满足乘法规则;如果希望以数量积的方式进行,则必须使用 np.multiply 函数,如下所示:

a = np.mat([[1, 2, 3, 4, 5]])
b = np.mat([[1,2,3,4,5]])
c=np.multiply(a,b)
print(c)

结果是

[[ 1 4 9 16 25]]
a = np.mat([[1, 2, 3, 4, 5]])
b = np.mat([ [1],[2],[3],[4],[5] ] )
d=a*b
print(d) #a是shape(1,5),b是shape(5,1),结果是一个实数

结果是

[[55]]

2、对于数组(array)而言

* 与 multiply均表示的是数量积(即对应元素的乘积相加),np.matmul与np.dot表示的是矢量积(即矩阵乘法)。

代码:

if __name__ == '__main__':
    w = np.array([[1,2],[3,4]])
    x = np.array([[1,3],[2,4]])
    w1 = np.array([[1,2],[3,4]])
    x1 = np.array([[1,2]])
    w_mat = np.mat([[1,2],[3,4]])
    x_mat = np.mat([[1,3],[2,4]])
    print("x1.shape:",np.shape(x1))
    w_x_start = w*x
    w_x_dot = np.dot(w,x)
    x_w_dot = np.dot(x,w)
    w_x_matmul = np.matmul(w, x)
    x_w_matmul = np.matmul(x, w)
    w_x_multiply = np.multiply(w,x)
    x_w_multiply = np.multiply(x, w)
    #w1_x1_matmul = np.matmul(w1, x1)
    x1_w1_matmul = np.matmul(x1, w1)
    w_x_mat_matmul = np.matmul(w_mat,x_mat)
    x_w_mat_matmul = np.matmul(x_mat, w_mat)
    w_x_mat_start = w_mat*x_mat
    x_w_mat_start = x_mat*w_mat
    w_x_mat_dot = np.dot(w_mat,x_mat)
    x_w_mat_dot = np.dot(x_mat,w_mat)
    w_x_mat_multiply = np.multiply(w_mat,x_mat)
    x_w_mat_multiply = np.multiply(x_mat,w_mat)
 
    print("w.shape:", np.shape(w))
    print("x.shape:", np.shape(x))
    print("w_x_start.shape:", np.shape(w_x_start))
    print("w_x_dot.shape:", np.shape(w_x_dot))
    print("x_w_dot.shape:", np.shape(x_w_dot))
    print("x1_w1_matmul.shape::", np.shape(x1_w1_matmul))
 
    print("做array数组运算时:", '\n')
    print("w_x_start:", w_x_start)
    print("w_x_dot:", w_x_dot)
    print("x_w_dot:", x_w_dot)
    print("w_x_matmul:", w_x_matmul)
    print("x_w_matmul:", x_w_matmul)
    print("w_x_multiply:", w_x_multiply)
    print("x_w_multiply:", x_w_multiply)
    # print("w1_x1_matmul:", w1_x1_matmul)
    print("x1_w1_matmul:", x1_w1_matmul)
 
    print("做matrix矩阵运算时:", '\n')
    print("w_x_mat_start:", w_x_mat_start)
    print("x_w_mat_start:", x_w_mat_start)
    print("x_w_mat_dot:", x_w_mat_dot)
    print("w_x_mat_dot:", w_x_mat_dot)
    print("w_x_mat_matmul:",w_x_mat_matmul)
    print("x_w_mat_matmul:", x_w_mat_matmul)
    print("w_x_mat_multiply",w_x_mat_multiply)
    print("x_w_mat_multiply", x_w_mat_multiply)
x1.shape: (1, 2)
w.shape: (2, 2)
x.shape: (2, 2)
w_x_start.shape: (2, 2)
w_x_dot.shape: (2, 2)
x_w_dot.shape: (2, 2)
x1_w1_matmul.shape:: (1, 2)
做array数组运算时:
 
w_x_start: [[ 1  6]
 [ 6 16]]
w_x_dot: [[ 5 11]
 [11 25]]
x_w_dot: [[10 14]
 [14 20]]
w_x_matmul: [[ 5 11]
 [11 25]]
x_w_matmul: [[10 14]
 [14 20]]
w_x_multiply: [[ 1  6]
 [ 6 16]]
x_w_multiply: [[ 1  6]
 [ 6 16]]
x1_w1_matmul: [[ 7 10]]
做matrix矩阵运算时:
 
w_x_mat_start: [[ 5 11]
 [11 25]]
x_w_mat_start: [[10 14]
 [14 20]]
x_w_mat_dot: [[10 14]
 [14 20]]
w_x_mat_dot: [[ 5 11]
 [11 25]]
w_x_mat_matmul: [[ 5 11]
 [11 25]]
x_w_mat_matmul: [[10 14]
 [14 20]]
w_x_mat_multiply [[ 1  6]
 [ 6 16]]
x_w_mat_multiply [[ 1  6]
 [ 6 16]]

python中转置的优先级高于乘法运算 例如:

a = np.mat([[2, 3, 4]])
b = np.mat([[1,2,3]] )
d=a*b.t
print(d)

结果是

[[20]]

其中a为1行3列,b也为1行3列,按理来说直接计算a*b是不能运算,但是计算d=a*b.t是可以的,结果是20,说明运算顺序是先转置再计算a与b转置的积,*作为矩阵乘法,值得注意的在执行*运算的时候必须符合行列原则。

numpy中tile()函数的用法

b = tile(a,(m,n)):即是把a数组里面的元素复制n次放进一个数组c中,然后再把数组c复制m次放进一个数组b中,通俗地讲就是将a在行方向上复制m次,在列方向上复制n次。

python中的 sum 和 np.sum 是不一样的,如果只写sum的话,表示的是数组中对应的维度相加,如果写 np.sum 的话,表示一个数组中的维数和列数上的数都加在一起。

如下图所示:

python numpy中multiply与*及matul 的区别说明

补充:总结:numpy中三个乘法运算multiply,dot和* 的区别

引言:

本人在做机器学习的练习1的时候,时常抛出错误:

python numpy中multiply与*及matul 的区别说明

not aligned是什么意思呢?

意思是两个矩阵相乘无意义。

线性代数中mxn 和 nxp的矩阵才能相乘,其结果是mxp的矩阵。

出错源代码:

def gradientdescent(x,y,theta,alpha,iteration):
    colunms = int(theta.ravel().shape[1])
    thetai = np.matrix(np.zeros(theta.shape))
    cost = np.zeros(iteration)
                       
    for i in range(iteration):
        error = x*theta.t-y
        for j in range(colunms):
            a = np.sum(error*x[:,j])/len(x) ########## error!
            thetai[0,j] = thetai[0,j] - alpha*a
            
        theta = thetai    
        cost[i] = computecost(x, y, theta)        
    return theta,cost

这里error是一个nx1的矩阵,theta.t也是一个nx1的矩阵。

而矩阵之间*运算符表示矩阵乘法。我们这里想实现矩阵的对应元素相乘,因此应该用np.multiply()实现。

总结:

(读者可使用简单的举例自行验证)

1.*用法:

矩阵与矩阵:矩阵乘法(matrix)

数组与数组:对应位置相乘(array)

2.np.dot()用法:

矩阵相乘的结果

3.np.multiply()用法:

数组、矩阵都得到对应位置相乘。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。