欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  科技

P型MOS管开关电路及工作原理详解-KIA MOS管

程序员文章站 2022-03-03 19:05:26
P型MOS管开关电路图PMOS是指n型衬底、p沟道,靠空穴的流动运送电流的MOS管。P沟道MOS晶体管的空穴迁移率低,因而在MOS晶体管的几何尺寸和工作电压绝对值相等的情况下,PMOS晶体管的跨导小于N沟道MOS晶体管。此外,P沟道MOS晶体管阈值电压的绝对值一般偏高,要求有较高的工作电压。它的供电电源的电压大小和极性,与双极型晶体管——晶体管逻辑电路不兼容。PMOS因逻辑摆幅大,充电放电过程长,加之器件跨导小,所以工作速度更低,在NMOS电路(见N沟道金属—氧化物—半导体集成电路)出现之后,多数已为N...

P型MOS管开关电路图

PMOS是指n型衬底、p沟道,靠空穴的流动运送电流的MOS管。

P沟道MOS晶体管的空穴迁移率低,因而在MOS晶体管的几何尺寸和工作电压绝对值相等的情况下,PMOS晶体管的跨导小于N沟道MOS晶体管。此外,P沟道MOS晶体管阈值电压的绝对值一般偏高,要求有较高的工作电压。它的供电电源的电压大小和极性,与双极型晶体管——晶体管逻辑电路不兼容。PMOS因逻辑摆幅大,充电放电过程长,加之器件跨导小,所以工作速度更低,在NMOS电路(见N沟道金属—氧化物—半导体集成电路)出现之后,多数已为NMOS电路所取代。只是,因PMOS电路工艺简单,价格便宜,有些中规模和小规模数字控制电路仍采用PMOS电路技术。

P型MOS管开关电路及工作原理详解-KIA MOS管

pmos管工作原理及详解

金属氧化物半导体场效应(MOS)晶体管可分为N沟道与P沟道两大类, P沟道硅MOS 场效应晶体管在N型硅衬底上有两个P+区,分别叫做源极和漏极,两极之间不通导,柵极上加有足够的正电压(源极接地)时,柵极下的N型硅表面呈现P型反型层,成为连接源极和漏极的沟道。改变栅压可以改变沟道中的电子密度,从而改变沟道的电阻。这种MOS场效应晶体管称为P沟道增强型场效应晶体管。如果N型硅衬底表面不加栅压就已存在P型反型层沟道,加上适当的偏压,可使沟道的电阻增大或减小。这样的MOS场效应晶体管称为P沟道耗尽型场效应晶体管。统称为PMOS晶体管。

P沟道MOS晶体管的空穴迁移率低,因而在MOS晶体管的几何尺寸和工作电压绝对值相等的情况下,PMOS晶体管的跨导小于N沟道MOS晶体管。此外,P沟道MOS晶体管阈值电压的绝对值一般偏高,要求有较高的工作电压。它的供电电源的电压大小和极性,与双极型晶体管——晶体管逻辑电路不兼容。PMOS因逻辑摆幅大,充电放电过程长,加之器件跨导小,所以工作速度更低,在NMOS电路(见N沟道金属—氧化物—半导体集成电路)出现之后,多数已为NMOS电路所取代。只是,因PMOS电路工艺简单,价格便宜,有些中规模和小规模数字控制电路仍采用PMOS电路技术。PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。

正常工作时,P沟道增强型MOS管的衬底必须与源极相连,而漏心极的电压Vds应为负值,以保证两个P区与衬底之间的PN结均为反偏,同时为了在衬底顶表面附近形成导电沟道,栅极对源极的电压Vgs也应为负。

1.导电沟道的形成(V ds=0)

当Vds=0时,在栅源之间加负电压Vgs,由于绝缘层的存在,故没有电流,但是金属栅极被补充电而聚集负电荷,N型半导体中的多子电子被负电荷排斥向体内运动,表面留下带正电的离子,形成耗尽层,随着G、S间负电压的增加,耗尽层加宽,当Vgs增大到一定值时,衬底中的空穴(少子)被栅极中的负电荷吸引到表面,在耗尽层和绝缘层之间形成一个P型薄层,称反型层,这个反型层就构成漏源之间的导电沟道,这时的V gs称为开启电压Vgs(th),Vgs到Vgs(th)后再增加,衬底表面感应的空穴越多,反型层加宽,而耗尽层的宽度却不再变化,这样我们可以用Vgs的大小控制导电沟道的宽度。

2.V ds≠O的情况

导电沟道形成以后,D,S间加负向电压时,那么在源极与漏极之间将有漏极电流I d 流通,而且I d随Vds而增加.I d沿沟道产生的压降使沟道上各点与栅极间的电压不再相等,该电压削弱了栅极中负电荷电场的作用,使沟道从漏极到源极逐渐变窄.当V ds增大到使V gd=V gs(TH),沟道在漏极附近出现预夹断.

P型MOS管电路图
下面电路为P沟道MOS管用作电路切换开关使用电路:

P型MOS管开关电路及工作原理详解-KIA MOS管

电路分析如下:

p沟道mos管开关电路的开启条件是VGS电压为负压,并且电压的绝对值大于最低开启电压,一般小功率的PMOS管的最小开启电压为0.7V左右,假设电池充满电,电压为4.2V,VGS=-4.2V,P沟道MOS管是导通的,电路是没有问题的。当5V电压时,G极的电压为5V,S极的电压为5VV-二极管压降(0.5左右)=4.5V,PMOS管关段,当没有5V电压时,G极电压下拉为0V,S极的电压为电池电压(假设电池充满电4.2V)-MOS管未导通二极管压降(0.5V)=3.7,这样PMOS就导通,二极管压降就没有了这样VGS=-4.2V.PMOS管导通对负载供电。在这里用一个肖特基二极管(SS12)也可以解决这个问题,不过就是有0.3V左右的电压降。这里使用P沟道MOS管,P沟道MOS管完全导通,内阻比较小,优与肖特基,几乎没有压降。不过下拉电阻使用的有点大,驱动P沟道MOS不需要电流的,只要电压达到就可以了,可以使用大电阻,减少工作电流,推荐使用10K-100K左右的电阻。

MOS管的工作原理(以N沟道增强型MOS场效应管)它是利用VGS来控制“感应电荷”的多少,以改变由这些“感应电荷”形成的导电沟道的状况,然后达到控制漏极电流的目的。在制造管子时,通过工艺使绝缘层中出现大量正离子,故在交界面的另一侧能感应出较多的负电荷,这些负电荷把高渗杂质的N区接通,形成了导电沟道,即使在VGS=0时也有较大的漏极电流ID。当栅极电压改变时,沟道内被感应的电荷量也改变,导电沟道的宽窄也随之而变,因而漏极电流ID随着栅极电压的变化而变化。

本文地址:https://blog.csdn.net/qq_42597971/article/details/107915755