欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

LeetCode 1326. Minimum Number of Taps to Open to Water a Garden 动态规划 离散化 贪心

程序员文章站 2022-04-02 18:49:50
...

There is a one-dimensional garden on the x-axis. The garden starts at the point 0and ends at the point n. (i.e The length of the garden is n).

There are n + 1 taps located at points [0, 1, ..., n] in the garden.

Given an integer n and an integer array ranges of length n + 1 where ranges[i] (0-indexed) means the i-th tap can water the area [i - ranges[i], i + ranges[i]] if it was open.

Return the minimum number of taps that should be open to water the whole garden, If the garden cannot be watered return -1.

 

Example 1:

LeetCode 1326. Minimum Number of Taps to Open to Water a Garden 动态规划 离散化 贪心

 

Input: n = 5, ranges = [3,4,1,1,0,0]
Output: 1
Explanation: The tap at point 0 can cover the interval [-3,3]
The tap at point 1 can cover the interval [-3,5]
The tap at point 2 can cover the interval [1,3]
The tap at point 3 can cover the interval [2,4]
The tap at point 4 can cover the interval [4,4]
The tap at point 5 can cover the interval [5,5]
Opening Only the second tap will water the whole garden [0,5]

Example 2:

Input: n = 3, ranges = [0,0,0,0]
Output: -1
Explanation: Even if you activate all the four taps you cannot water the whole garden.

Example 3:

Input: n = 7, ranges = [1,2,1,0,2,1,0,1]
Output: 3

Example 4:

Input: n = 8, ranges = [4,0,0,0,0,0,0,0,4]
Output: 2

Example 5:

Input: n = 8, ranges = [4,0,0,0,4,0,0,0,4]
Output: 1

 

Constraints:

  • 1 <= n <= 10^4
  • ranges.length == n + 1
  • 0 <= ranges[i] <= 100

-----------------------------

思路一:动态规划

思路一比较容易想到,用f[pos]表示覆盖[0,pos]闭区间至少需要多少个水龙头,那么f[pos]=min(f[pos],f[start]+1),pos是i位置水龙头覆盖的范围[start,end],那么代码如下:

class Solution:
    def minTaps(self, n: int, ranges: List[int]) -> int:
        f = [0] + [n+1]*n
        for i in range(n+1):
            start,end = max(i-ranges[i],0),min(i+ranges[i],n)
            for pos in range(start, end+1):
                f[pos] = min(f[pos],f[start]+1)
        #print(f)
        return -1 if f[n] == n+1 else f[n]

思路一每个位置都需要覆盖,复杂度n*range,range是水龙头平均覆盖范围。

思路二:思路二分多个阶段,在[cur_stage_start,cur_stage_end]中的水龙头,最远覆盖到furthest。如果furthest比cur_stage_end远,那么下个阶段是[cur_stage_end,furthest],此时跳到furthest的水龙头一定需要,cnt+1;如果furthest比cur_stage_end近,不可能全覆盖,返回-1。所以初始的[cur_stage_start,cur_stage_end]=[0,0]这个水龙头即可。

另外一个技巧是,可以存一个离散化的数组right_edge= [0]*(n+1)   #key:left edge; value: right edge。可以预先知道每个位置跳到的最远位置在哪里

from typing import List
class Solution:
    def minTaps(self, n: int, ranges: List[int]) -> int:
        right_edge= [0]*(n+1)   #key:left edge; value: right edge

        for i in range(n+1):
            l,r = max(0,i-ranges[i]),min(n,i+ranges[i])
            right_edge[l] = r
        cur_stage_end,furthest,cnt = 0,0,0
        for i in range(n): #bug1: n instead of n+1
            if (right_edge[i] > furthest):
                furthest = right_edge[i]
            if (i == cur_stage_end):
                if (furthest <= cur_stage_end):
                    return -1
                else:
                    cur_stage_end,furthest,cnt = furthest,i,cnt+1
        return cnt

s = Solution()
print(s.minTaps(n = 7, ranges = [1,2,1,0,2,1,0,1]))