LeetCode 1326. Minimum Number of Taps to Open to Water a Garden 动态规划 离散化 贪心
There is a one-dimensional garden on the x-axis. The garden starts at the point 0
and ends at the point n
. (i.e The length of the garden is n
).
There are n + 1
taps located at points [0, 1, ..., n]
in the garden.
Given an integer n
and an integer array ranges
of length n + 1
where ranges[i]
(0-indexed) means the i-th
tap can water the area [i - ranges[i], i + ranges[i]]
if it was open.
Return the minimum number of taps that should be open to water the whole garden, If the garden cannot be watered return -1.
Example 1:
Input: n = 5, ranges = [3,4,1,1,0,0] Output: 1 Explanation: The tap at point 0 can cover the interval [-3,3] The tap at point 1 can cover the interval [-3,5] The tap at point 2 can cover the interval [1,3] The tap at point 3 can cover the interval [2,4] The tap at point 4 can cover the interval [4,4] The tap at point 5 can cover the interval [5,5] Opening Only the second tap will water the whole garden [0,5]
Example 2:
Input: n = 3, ranges = [0,0,0,0] Output: -1 Explanation: Even if you activate all the four taps you cannot water the whole garden.
Example 3:
Input: n = 7, ranges = [1,2,1,0,2,1,0,1] Output: 3
Example 4:
Input: n = 8, ranges = [4,0,0,0,0,0,0,0,4] Output: 2
Example 5:
Input: n = 8, ranges = [4,0,0,0,4,0,0,0,4] Output: 1
Constraints:
1 <= n <= 10^4
ranges.length == n + 1
0 <= ranges[i] <= 100
-----------------------------
思路一:动态规划
思路一比较容易想到,用f[pos]表示覆盖[0,pos]闭区间至少需要多少个水龙头,那么f[pos]=min(f[pos],f[start]+1),pos是i位置水龙头覆盖的范围[start,end],那么代码如下:
class Solution:
def minTaps(self, n: int, ranges: List[int]) -> int:
f = [0] + [n+1]*n
for i in range(n+1):
start,end = max(i-ranges[i],0),min(i+ranges[i],n)
for pos in range(start, end+1):
f[pos] = min(f[pos],f[start]+1)
#print(f)
return -1 if f[n] == n+1 else f[n]
思路一每个位置都需要覆盖,复杂度n*range,range是水龙头平均覆盖范围。
思路二:思路二分多个阶段,在[cur_stage_start,cur_stage_end]中的水龙头,最远覆盖到furthest。如果furthest比cur_stage_end远,那么下个阶段是[cur_stage_end,furthest],此时跳到furthest的水龙头一定需要,cnt+1;如果furthest比cur_stage_end近,不可能全覆盖,返回-1。所以初始的[cur_stage_start,cur_stage_end]=[0,0]这个水龙头即可。
另外一个技巧是,可以存一个离散化的数组right_edge= [0]*(n+1) #key:left edge; value: right edge。可以预先知道每个位置跳到的最远位置在哪里
from typing import List
class Solution:
def minTaps(self, n: int, ranges: List[int]) -> int:
right_edge= [0]*(n+1) #key:left edge; value: right edge
for i in range(n+1):
l,r = max(0,i-ranges[i]),min(n,i+ranges[i])
right_edge[l] = r
cur_stage_end,furthest,cnt = 0,0,0
for i in range(n): #bug1: n instead of n+1
if (right_edge[i] > furthest):
furthest = right_edge[i]
if (i == cur_stage_end):
if (furthest <= cur_stage_end):
return -1
else:
cur_stage_end,furthest,cnt = furthest,i,cnt+1
return cnt
s = Solution()
print(s.minTaps(n = 7, ranges = [1,2,1,0,2,1,0,1]))
上一篇: Minimum Depth of Binary Tree
下一篇: Schedule