欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

2019牛客暑期多校训练营(第二场) - B - Eddy Walker 2 - BM算法

程序员文章站 2022-04-02 18:48:31
...

参考于:
https://www.luogu.org/problemnew/solution/P4723 shadowice1984 (太难)
https://www.cnblogs.com/zhgyki/p/9671855.html (玄学)

居然还有解释:
https://www.cnblogs.com/zhouzhendong/p/Berlekamp-Massey.html

线性递推BM算法,把前面的8~10项push进去?
下面是板子,求第n项调用参数是n-1。

#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=1000000007;
ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
// head

ll n;
namespace linear_seq {
    const int N=10010;
    ll res[N],base[N],_c[N],_md[N];

    vector<int> Md;
    void mul(ll *a,ll *b,int k) {
        rep(i,0,k+k) _c[i]=0;
        rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
        for (int i=k+k-1;i>=k;i--) if (_c[i])
            rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
        rep(i,0,k) a[i]=_c[i];
    }
    int solve(ll n,VI a,VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
        ll ans=0,pnt=0;
        int k=SZ(a);
        assert(SZ(a)==SZ(b));
        rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1;
        Md.clear();
        rep(i,0,k) if (_md[i]!=0) Md.push_back(i);
        rep(i,0,k) res[i]=base[i]=0;
        res[0]=1;
        while ((1ll<<pnt)<=n) pnt++;
        for (int p=pnt;p>=0;p--) {
            mul(res,res,k);
            if ((n>>p)&1) {
                for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;
                rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
            }
        }
        rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
        if (ans<0) ans+=mod;
        return ans;
    }
    VI BM(VI s) {
        VI C(1,1),B(1,1);
        int L=0,m=1,b=1;
        rep(n,0,SZ(s)) {
            ll d=0;
            rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;
            if (d==0) ++m;
            else if (2*L<=n) {
                VI T=C;
                ll c=mod-d*powmod(b,mod-2)%mod;
                while (SZ(C)<SZ(B)+m) C.pb(0);
                rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
                L=n+1-L; B=T; b=d; m=1;
            } else {
                ll c=mod-d*powmod(b,mod-2)%mod;
                while (SZ(C)<SZ(B)+m) C.pb(0);
                rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
                ++m;
            }
        }
        return C;
    }
    int gao(VI a,ll n) {
        VI c=BM(a);
        c.erase(c.begin());
        rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;
        return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
    }
};

int main() {
    /*push_back 进去前 8~10 项左右、最后调用 gao 得第 n 项*/
    vector<int>v;
    v.push_back(3);
    v.push_back(9);
    v.push_back(20);
    v.push_back(46);
    v.push_back(106);
    v.push_back(244);
    v.push_back(560);
    v.push_back(1286);
    v.push_back(2956);
    v.push_back(6794);
    int nCase;
    scanf("%d", &nCase);
    while(nCase--){
        scanf("%lld", &n);
        printf("%lld\n",1LL * linear_seq::gao(v,n-1) % mod);
    }
}

仿照上面的思路瞎搞通过。

#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
typedef vector<int> vi;
typedef long long ll;
const ll mod=1000000007;

ll qpow(ll x,ll n) {
    ll res=1;
    for(; n; x=x*x%mod,n>>=1)
        if(n&1)
            res=res*x%mod;
    return res;
}

namespace Linear_Recurrence {

//空间无所谓,开大一点
const int N=10010;
ll res[N],base[N],c[N],md[N];

int umd[N],sizumd;
void mul(ll *a,ll *b,int k) {
    rep(i,0,k+k) c[i]=0;
    rep(i,0,k) if (a[i])
        rep(j,0,k) c[i+j]=(c[i+j]+a[i]*b[j])%mod;

    for (int i=k+k-1; i>=k; i--)
        if (c[i])
            rep(j,0,sizumd) c[i-k+umd[j]]=(c[i-k+umd[j]]-c[i]*md[umd[j]])%mod;

    rep(i,0,k) a[i]=c[i];
}

int solve(ll n,vi a,vi b) {
    //a是系数向量,b是初值向量
    //递推公式形如b[n+1]=a[0]*b[n]+a[1]*b[n-1]+...
    ll ans=0,pnt=0;
    int k=a.size();
    rep(i,0,k) md[k-1-i]=-a[i];
    md[k]=1;
    sizumd=0;
    rep(i,0,k) {
        if (md[i]!=0)
            umd[sizumd++]=i;
    }
    rep(i,0,k) res[i]=0,base[i]=0;
    res[0]=1;

    while ((1ll<<pnt)<=n)
        pnt++;
    for (int p=pnt; p>=0; p--) {
        mul(res,res,k);
        if ((n>>p)&1) {
            for (int i=k-1; i>=0; i--)
                res[i+1]=res[i];
            res[0]=0;
            rep(j,0,sizumd) res[umd[j]]=(res[umd[j]]-res[k]*md[umd[j]])%mod;
        }
    }
    rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
    if (ans<0)
        ans+=mod;
    return ans;
}
vi BM(vi s) {
    vi C(1,1),B(1,1);
    int L=0,m=1,b=1;
    int sizs=s.size();
    rep(n,0,sizs) {
        ll d=0;
        rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;
        if (d==0)
            ++m;
        else if (2*L<=n) {
            vi T=C;
            int sizB=B.size();
            while (C.size()<sizB+m)
                C.push_back(0);
            ll t=mod-d*qpow(b,mod-2)%mod;
            rep(i,0,sizB) C[i+m]=(C[i+m]+t*B[i])%mod;
            L=n+1-L,B=T,b=d,m=1;
        } else {
            int sizB=B.size();
            while (C.size()<sizB+m)
                C.push_back(0);
            ll t=mod-d*qpow(b,mod-2)%mod;
            rep(i,0,sizB) C[i+m]=(C[i+m]+t*B[i])%mod;
            ++m;
        }
    }
    return C;
}
int gao(vi A,ll n) {
    vi C=BM(A);
    C.erase(C.begin());
    int sizC=C.size();
    rep(i,0,sizC) C[i]=(mod-C[i])%mod;
    return solve(n,C,vi(A.begin(),A.begin()+sizC));
}
};

ll dp[3005];

ll solve(int k,ll n) {
    ll invk=qpow(k,mod-2);
    dp[0]=1;
    //至少取2倍以上
    int c=k*2;
    for(int i=1; i<=c+1; i++) {
        dp[i]=0;
        for(int j=max(0,i-k); j<=i-1; j++) {
            dp[i]+=dp[j];
        }
        dp[i]=(dp[i]%mod)*invk%mod;
    }
    vi v;
    for(int i=0; i<=c+1; i++)
        v.push_back((int)dp[i]);
    //从0开始,到n,这里其实是第n+1项
    return Linear_Recurrence::gao(v,n);
}

int main() {
#ifdef Yinku
    freopen("Yinku.in","r",stdin);
#endif // Yinku
    int t,k;
    ll n;
    scanf("%d", &t);
    while(t--) {
        scanf("%d%lld", &k,&n);
        if(n==-1)
            printf("%lld\n",2ll*qpow(k+1,mod-2)%mod);
        else
            printf("%lld\n",solve(k,n));
    }
}

好像前2K项比较保险,前K项就WA了,前1.5K项也WA了,临界值是多少呢?反正大概取2~3倍递推可能就够了吧。