欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  科技

刷脸支付?机器人还没炼成“火眼金睛”

程序员文章站 2022-04-02 17:22:29
不久前,李世石与AlphaGo的人机大战,宣示了人工智能的强大,最近,支付宝也策划了人与机器的又一场大战:人脸识别。面对千篇一律的网红,机器人“蚂可”(Mark)是否也会面临脸...

不久前,李世石与AlphaGo的人机大战,宣示了人工智能的强大,最近,支付宝也策划了人与机器的又一场大战:人脸识别。面对千篇一律的网红,机器人“蚂可”(Mark)是否也会面临脸盲的尴尬呢?

此次的人机大战,代表人类出战的是有着“鬼才之眼”之称的王昱珩,与他对垒的是支付宝旗下的人工智能生物识别机器人“蚂可”,他们的识别对象是数百名网红,根据选定的网红照片找出对应的网红。众所周知,网红的特征就是美得千篇一律,让人“傻傻分不清楚”,这无疑增加了识别难度。

刷脸支付?机器人还没炼成“火眼金睛”

人脸识别/图 来源网络

“蚂可”是由蚂蚁金服生物识别技术小组与Face++合作研发,据其相关负责人介绍,机器人是通过脸上不同关键点之间的距离,通过算法算出人脸在不同角度下关键点的变化,从而进行人脸识别的。据介绍,“蚂可”每次识别会从人脸上提取600多个关键点,进行交叉验证和动态识别。

据了解,人脸识别技术的关键在于通过不同脸部图像上眼睛、眉毛、鼻子、嘴巴、脸颊轮廓特征关键点和面部表情网,找出彼此之间的关联,最终判定这些图像是否为同一个人,但人脸是变化的,不同角度不同妆容都能影响特征关键点的抓龋

“所以,关键点的位置识别非常重要,就算是同一张人脸,稍微偏移一点角度,关键点就会完全不一样。”据一位人脸识别从业者介绍,“如果只是简单的化妆,不会对识别结果有很大影响,如果化妆太过,以至于人眼都觉得化妆后变了样,那机器也会产生误差。”

值得注意的是,机器人的人脸识别技能还来自于样本库,样本库的大小影响识别精准度。如果样本库中只有一个样本,那么就是1:1的对比,精准度可以达到100%,但如果是1:N的对比, 就会难很多,N的数值越大,难度系数越高,同时需要巨大的运算性能支持。

虽然“蚂可”才几个月大,但已“阅人无数”。据蚂蚁金服透露,它识别过的人脸超过500万张,“看”过的照片超过1.2亿,人脸识别精度达99.6%。

然而,在这场人脸识别大战中还有一个重要因素,那就是比对网红使用的“注册人脸”和“输入人脸”是什么情况。比如,一位网红用自己10岁的照片作为注册人脸,然后用其20岁的照片作为输入人脸。由于人脸成长过程,肌肉骨骼会发生变化,所以要认出是同一个人,也就是相似度足够高,难度不容小觑。据了解,目前的人脸比对技术可以满足这个需求,即跨年龄的比对。

但是,如果一个网红用素颜的人脸作为注册人脸, 然后拿PS后的照片作为输入人脸,机器人还能识别出来是一个人吗?据了解,如果进行了美白、提亮,不对骨骼形状进行处理,比对精度较高,但如果PS进行了类似削骨,拉长的处理,那精度就会降低。

最终,在这场网红脸识别的人机大战中,人类以3:2的结果胜出。在前两轮从上百张照片中找出随机选出的到场网红中,王昱珩和“蚂可”均全部选对,然而,在第三场,从80张幼年照片中找出2名随机选出的到场网红,水哥王昱珩选对一人,“蚂可”均未选对。不难看出,从不同的年龄阶段中识别出同一个人,对机器人来说是难以克服的问题。

人脸识别从跟自己比对,到跟很多人比对,最终是为了服务快速简便的ID识别的场景上,当人脸就是你的随时身份认证标志,可以作为身份、会员、甚至是货币的代替品。据悉,谷歌旗下的新支付应用“Hands Free”,目前已在美国旧金山湾区南部麦当劳等商店进行测试应用,通过蓝牙、Wi-Fi和定位数据来判断顾客位置,当你进入一家支持“Hands Free”支付的小店或者餐馆,应用就会与收款机进行连接。当顾客喊谷歌支付之后,收银员可以直接通过程序核对顾客颜值、姓名等信息,确认后即可完成支付。

当刷脸支付走进百姓家时,或许有一天结账时会出现,“对不起,您的脸已透支!”